A. Dickson, Benjamin C Gill, M. Ruhl, H. Jenkyns, D. Porcelli, E. Idiz, T. Lyons, S. V. D. Boorn
{"title":"早侏罗世Toarcian海洋缺氧事件的钼同位素化学地层学和古海洋学","authors":"A. Dickson, Benjamin C Gill, M. Ruhl, H. Jenkyns, D. Porcelli, E. Idiz, T. Lyons, S. V. D. Boorn","doi":"10.1002/2016PA003048","DOIUrl":null,"url":null,"abstract":"Molybdenum (Mo)-isotope chemostratigraphy of organic-rich mudrocks has been a valuable tool for testing the hypothesis that the Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic, ~183 Ma) was characterized by the spread of marine euxinia (and organic-matter burial) at a global scale. However, the interpretation of existing Mo-isotope data for the T-OAE (from Yorkshire, Cleveland Basin, U.K.) is equivocal. In this study, three new Mo-isotope profiles are presented: from Dotternhausen Quarry (South German Basin, Germany), the Rijswijk core (West Netherlands Basin, Netherlands) and the Dogna core (Belluno Basin, northern Italy). Precise bio- and chemo-stratigraphic correlation between the three sites allows a direct comparison of the data, enabling some key conclusions to be reached: (i) The Mo-isotope composition of seawater during the peak of the T-OAE was probably close to ~1.45 ‰, implicating a greater removal flux of sulphides from seawater, and a larger extent of global seafloor euxinia compared to the present day; (ii) Mo-isotope cycles previously identified in the Yorkshire sedimentary succession are attributed to changes in the degree of local Mo drawdown from overlying Cleveland Basin seawater; (iii) The consistency of the new multi-site Mo-isotope dataset indicates a secular reduction in the burial of sulphides globally in the late stages of the T-OAE, implying a contraction in the extent of global marine euxinia; (iv) Subtle differences in the Mo-isotope composition of deposits formed in different euxinic sub-basins of the European epicontinental shelf were probably governed by local variations in basin hydrography and rates of water renewal.","PeriodicalId":19882,"journal":{"name":"Paleoceanography","volume":"32 1","pages":"813-829"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/2016PA003048","citationCount":"62","resultStr":"{\"title\":\"Molybdenum‐isotope chemostratigraphy and paleoceanography of the Toarcian Oceanic Anoxic Event (Early Jurassic)\",\"authors\":\"A. Dickson, Benjamin C Gill, M. Ruhl, H. Jenkyns, D. Porcelli, E. Idiz, T. Lyons, S. V. D. Boorn\",\"doi\":\"10.1002/2016PA003048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molybdenum (Mo)-isotope chemostratigraphy of organic-rich mudrocks has been a valuable tool for testing the hypothesis that the Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic, ~183 Ma) was characterized by the spread of marine euxinia (and organic-matter burial) at a global scale. However, the interpretation of existing Mo-isotope data for the T-OAE (from Yorkshire, Cleveland Basin, U.K.) is equivocal. In this study, three new Mo-isotope profiles are presented: from Dotternhausen Quarry (South German Basin, Germany), the Rijswijk core (West Netherlands Basin, Netherlands) and the Dogna core (Belluno Basin, northern Italy). Precise bio- and chemo-stratigraphic correlation between the three sites allows a direct comparison of the data, enabling some key conclusions to be reached: (i) The Mo-isotope composition of seawater during the peak of the T-OAE was probably close to ~1.45 ‰, implicating a greater removal flux of sulphides from seawater, and a larger extent of global seafloor euxinia compared to the present day; (ii) Mo-isotope cycles previously identified in the Yorkshire sedimentary succession are attributed to changes in the degree of local Mo drawdown from overlying Cleveland Basin seawater; (iii) The consistency of the new multi-site Mo-isotope dataset indicates a secular reduction in the burial of sulphides globally in the late stages of the T-OAE, implying a contraction in the extent of global marine euxinia; (iv) Subtle differences in the Mo-isotope composition of deposits formed in different euxinic sub-basins of the European epicontinental shelf were probably governed by local variations in basin hydrography and rates of water renewal.\",\"PeriodicalId\":19882,\"journal\":{\"name\":\"Paleoceanography\",\"volume\":\"32 1\",\"pages\":\"813-829\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/2016PA003048\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/2016PA003048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/2016PA003048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molybdenum‐isotope chemostratigraphy and paleoceanography of the Toarcian Oceanic Anoxic Event (Early Jurassic)
Molybdenum (Mo)-isotope chemostratigraphy of organic-rich mudrocks has been a valuable tool for testing the hypothesis that the Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic, ~183 Ma) was characterized by the spread of marine euxinia (and organic-matter burial) at a global scale. However, the interpretation of existing Mo-isotope data for the T-OAE (from Yorkshire, Cleveland Basin, U.K.) is equivocal. In this study, three new Mo-isotope profiles are presented: from Dotternhausen Quarry (South German Basin, Germany), the Rijswijk core (West Netherlands Basin, Netherlands) and the Dogna core (Belluno Basin, northern Italy). Precise bio- and chemo-stratigraphic correlation between the three sites allows a direct comparison of the data, enabling some key conclusions to be reached: (i) The Mo-isotope composition of seawater during the peak of the T-OAE was probably close to ~1.45 ‰, implicating a greater removal flux of sulphides from seawater, and a larger extent of global seafloor euxinia compared to the present day; (ii) Mo-isotope cycles previously identified in the Yorkshire sedimentary succession are attributed to changes in the degree of local Mo drawdown from overlying Cleveland Basin seawater; (iii) The consistency of the new multi-site Mo-isotope dataset indicates a secular reduction in the burial of sulphides globally in the late stages of the T-OAE, implying a contraction in the extent of global marine euxinia; (iv) Subtle differences in the Mo-isotope composition of deposits formed in different euxinic sub-basins of the European epicontinental shelf were probably governed by local variations in basin hydrography and rates of water renewal.