一种新型柔性凹入式蜂窝的弯曲性能研究

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2023-05-25 DOI:10.1115/1.4062620
Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun
{"title":"一种新型柔性凹入式蜂窝的弯曲性能研究","authors":"Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun","doi":"10.1115/1.4062620","DOIUrl":null,"url":null,"abstract":"\n In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Bending Behaviors of a Novel Flexible Re-entrant Honeycomb\",\"authors\":\"Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun\",\"doi\":\"10.1115/1.4062620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062620\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4062620","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高传统凹入式(re)蜂窝的弯曲性能,通过在re蜂窝中添加额外的连接壁结构,提出了一种新型的膨胀蜂窝结构,称为re-L蜂窝。通过分析、数值和实验模型,全面研究了新型RE-L蜂窝的弯曲行为,包括线弹性变形下的性能和大变形下的弯曲行为。结果表明,由于附加结构的高度柔性性能,所提出的RE-L蜂窝显著提高了x方向的弯曲柔度,其中弯曲刚度和最大弯曲力分别仅为RE蜂窝的23%和29.4%。此外,该附加结构明显提高了原胀形蜂窝的可设计性和正交异性。总之,所提出的RE-L显示出改进的弯曲性能,这在未来的研究和相关应用中值得更多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Bending Behaviors of a Novel Flexible Re-entrant Honeycomb
In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1