{"title":"空间GARCH模型中的贝叶斯推理:在美国房价回报中的应用","authors":"Osman Doğan, Suleyman Taspinar","doi":"10.1080/17421772.2022.2123553","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper we consider a high-order spatial generalized autoregressive conditional heteroskedasticity (GARCH) model to account for the volatility clustering patterns observed over space. The model consists of a log-volatility equation that includes the high-order spatial lags of the log-volatility term and the squared outcome variable. We use a transformation approach to turn the model into a mixture of normals model, and then introduce a Bayesian Markov chain Monte Carlo (MCMC) estimation approach coupled with a data-augmentation technique. Our simulation results show that the Bayesian estimator has good finite sample properties. We apply a first-order version of the spatial GARCH model to US house price returns at the metropolitan statistical area level over the period 2006Q1–2013Q4 and show that there is significant variation in the log-volatility estimates over space in each period.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"18 1","pages":"410 - 428"},"PeriodicalIF":16.4000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian inference in spatial GARCH models: an application to US house price returns\",\"authors\":\"Osman Doğan, Suleyman Taspinar\",\"doi\":\"10.1080/17421772.2022.2123553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper we consider a high-order spatial generalized autoregressive conditional heteroskedasticity (GARCH) model to account for the volatility clustering patterns observed over space. The model consists of a log-volatility equation that includes the high-order spatial lags of the log-volatility term and the squared outcome variable. We use a transformation approach to turn the model into a mixture of normals model, and then introduce a Bayesian Markov chain Monte Carlo (MCMC) estimation approach coupled with a data-augmentation technique. Our simulation results show that the Bayesian estimator has good finite sample properties. We apply a first-order version of the spatial GARCH model to US house price returns at the metropolitan statistical area level over the period 2006Q1–2013Q4 and show that there is significant variation in the log-volatility estimates over space in each period.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"18 1\",\"pages\":\"410 - 428\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/17421772.2022.2123553\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/17421772.2022.2123553","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian inference in spatial GARCH models: an application to US house price returns
ABSTRACT In this paper we consider a high-order spatial generalized autoregressive conditional heteroskedasticity (GARCH) model to account for the volatility clustering patterns observed over space. The model consists of a log-volatility equation that includes the high-order spatial lags of the log-volatility term and the squared outcome variable. We use a transformation approach to turn the model into a mixture of normals model, and then introduce a Bayesian Markov chain Monte Carlo (MCMC) estimation approach coupled with a data-augmentation technique. Our simulation results show that the Bayesian estimator has good finite sample properties. We apply a first-order version of the spatial GARCH model to US house price returns at the metropolitan statistical area level over the period 2006Q1–2013Q4 and show that there is significant variation in the log-volatility estimates over space in each period.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.