{"title":"东北三省人居环境空间网络结构及驱动因素","authors":"Rui Song, Xueming Li, Xinyu Hou","doi":"10.3389/fevo.2023.1206808","DOIUrl":null,"url":null,"abstract":"Urban human settlements' spatial network structures have emerged as crucial determinants impacting their health and sustainability. Understanding the influencing factors is pivotal for enhancing these settlements. This study focuses on 34 prefecture-level cities in Northeastern China from 2005 to 2020. It employs a modified gravitational model to establish spatial relationships among urban human settlements. Social network analysis techniques, including modularity and the quadratic assignment procedure (QAP) regression model, are introduced to analyze the network's characteristics and driving factors.A modified gravitational model is applied to create the spatial association network of urban human settlements. Social network analysis tools, along with modularity and the QAP regression model, are utilized to investigate the network's attributes and influencing elements. The study evaluates the evolution of spatial correlation, network cohesion, hierarchy, and efficiency.Throughout the study period, spatial correlation among urban human settlements in Northeastern China progressively intensified. However, the network exhibited relatively low density (0.217675), implying limited interconnectivity among cities. The average network hierarchy was 0.178225, indicating the need for optimization, while the average network efficiency was 0.714025, reflecting fewer redundant relationships. The analysis reveals the emergence of a polycentric network pattern with core and sub-core cities like Shenyang, Dalian, Changchun, Daqing, and Harbin. The urban network configuration has largely stabilized. The spatial association network showcases the intertwining of \"small groups\" and community organizations. Geographic proximity and merit-based linkages govern feature flow. Measures such as breaking administrative barriers, reducing flow time and distance, boosting resident income, and increasing government investment are identified to foster balanced network development and structural optimization.The research underscores the increasing spatial correlation and evolving network pattern among urban human settlements in Northeastern China. Despite the observed strengthening correlation, challenges related to network cohesion and hierarchy persist. The formation of a polycentric network signifies positive progress in urban development. The study highlights the importance of proximity and merit-based connections for feature flow. The proposed measures offer pathways to enhance network development and optimize structure, promoting holistic urban settlement growth and sustainability.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial network structure and driving factors of human settlements in three Northeastern provinces of China\",\"authors\":\"Rui Song, Xueming Li, Xinyu Hou\",\"doi\":\"10.3389/fevo.2023.1206808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban human settlements' spatial network structures have emerged as crucial determinants impacting their health and sustainability. Understanding the influencing factors is pivotal for enhancing these settlements. This study focuses on 34 prefecture-level cities in Northeastern China from 2005 to 2020. It employs a modified gravitational model to establish spatial relationships among urban human settlements. Social network analysis techniques, including modularity and the quadratic assignment procedure (QAP) regression model, are introduced to analyze the network's characteristics and driving factors.A modified gravitational model is applied to create the spatial association network of urban human settlements. Social network analysis tools, along with modularity and the QAP regression model, are utilized to investigate the network's attributes and influencing elements. The study evaluates the evolution of spatial correlation, network cohesion, hierarchy, and efficiency.Throughout the study period, spatial correlation among urban human settlements in Northeastern China progressively intensified. However, the network exhibited relatively low density (0.217675), implying limited interconnectivity among cities. The average network hierarchy was 0.178225, indicating the need for optimization, while the average network efficiency was 0.714025, reflecting fewer redundant relationships. The analysis reveals the emergence of a polycentric network pattern with core and sub-core cities like Shenyang, Dalian, Changchun, Daqing, and Harbin. The urban network configuration has largely stabilized. The spatial association network showcases the intertwining of \\\"small groups\\\" and community organizations. Geographic proximity and merit-based linkages govern feature flow. Measures such as breaking administrative barriers, reducing flow time and distance, boosting resident income, and increasing government investment are identified to foster balanced network development and structural optimization.The research underscores the increasing spatial correlation and evolving network pattern among urban human settlements in Northeastern China. Despite the observed strengthening correlation, challenges related to network cohesion and hierarchy persist. The formation of a polycentric network signifies positive progress in urban development. The study highlights the importance of proximity and merit-based connections for feature flow. The proposed measures offer pathways to enhance network development and optimize structure, promoting holistic urban settlement growth and sustainability.\",\"PeriodicalId\":12367,\"journal\":{\"name\":\"Frontiers in Ecology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Ecology and Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fevo.2023.1206808\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2023.1206808","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Spatial network structure and driving factors of human settlements in three Northeastern provinces of China
Urban human settlements' spatial network structures have emerged as crucial determinants impacting their health and sustainability. Understanding the influencing factors is pivotal for enhancing these settlements. This study focuses on 34 prefecture-level cities in Northeastern China from 2005 to 2020. It employs a modified gravitational model to establish spatial relationships among urban human settlements. Social network analysis techniques, including modularity and the quadratic assignment procedure (QAP) regression model, are introduced to analyze the network's characteristics and driving factors.A modified gravitational model is applied to create the spatial association network of urban human settlements. Social network analysis tools, along with modularity and the QAP regression model, are utilized to investigate the network's attributes and influencing elements. The study evaluates the evolution of spatial correlation, network cohesion, hierarchy, and efficiency.Throughout the study period, spatial correlation among urban human settlements in Northeastern China progressively intensified. However, the network exhibited relatively low density (0.217675), implying limited interconnectivity among cities. The average network hierarchy was 0.178225, indicating the need for optimization, while the average network efficiency was 0.714025, reflecting fewer redundant relationships. The analysis reveals the emergence of a polycentric network pattern with core and sub-core cities like Shenyang, Dalian, Changchun, Daqing, and Harbin. The urban network configuration has largely stabilized. The spatial association network showcases the intertwining of "small groups" and community organizations. Geographic proximity and merit-based linkages govern feature flow. Measures such as breaking administrative barriers, reducing flow time and distance, boosting resident income, and increasing government investment are identified to foster balanced network development and structural optimization.The research underscores the increasing spatial correlation and evolving network pattern among urban human settlements in Northeastern China. Despite the observed strengthening correlation, challenges related to network cohesion and hierarchy persist. The formation of a polycentric network signifies positive progress in urban development. The study highlights the importance of proximity and merit-based connections for feature flow. The proposed measures offer pathways to enhance network development and optimize structure, promoting holistic urban settlement growth and sustainability.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.