{"title":"可持续发展:现代NLP电影推荐系统的语义化趋势","authors":"Shadi AlZu’b, A. Zraiqat, Samar Hendawi","doi":"10.15849/ijasca.221128.11","DOIUrl":null,"url":null,"abstract":"Abstract Recommendation systems are an important feature in the proposed virtual life, where users are often stuck with choices most of the time and need help to be able to find what they are looking for. In this work, contentbased techniques have been employed in the proposed recommender system in two ways, a deep review for content and features contents such as (cast, crew, keywords, and genres) has been conducted. A preprocessing stage using TF-IDF and CountVectorizer methods have been employed efficiently to prepare the dataset for any similarity measurements. Cosine similarity algorithm has been employed as well with and without sigmoid and linear kernals. The achieved result proves that similarities between movies using TF-IDF with - Cosine similarity (sigmoid kernel) overcomes the TF-IDF with - Cosine similarity (linear_kernel) and Cosine similarity with CountVectorizer in collaborative filtering. The accuracy values of different machine learning models are validated with K-fold Cross Validator techniques. The performance evaluation has been measured using ROOT Mean Square Error and Mean Absolute Error. Five Machine learning algorithms (NormalPredictor, SVD, KNNBasic (with k=20 and K=10), KNNBasic (with sim_options), and NMF (in several rating scales)). Accuracies are finally been validated with 3 folds from each validator. The best achieved RMSE and MAE scores are using SVD (RMSE = 90%) and (MAE = 69%), followed by KNNBasic (with sim_options, K= 20), NMF, KNNBasic (K=20), KNNBasic (K=10), ending with KNNBasic(sim_options, K= 10). Keywords: Recommendation System, Sustainable Development, Artificial Intelligence, Collaborative Filtering, Content-Based, Cosine Similarity, Movies Recommendation, NLP, Machine Learning Application.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Sustainable Development: A Semantics-aware Trends for Movies Recommendation System using Modern NLP\",\"authors\":\"Shadi AlZu’b, A. Zraiqat, Samar Hendawi\",\"doi\":\"10.15849/ijasca.221128.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recommendation systems are an important feature in the proposed virtual life, where users are often stuck with choices most of the time and need help to be able to find what they are looking for. In this work, contentbased techniques have been employed in the proposed recommender system in two ways, a deep review for content and features contents such as (cast, crew, keywords, and genres) has been conducted. A preprocessing stage using TF-IDF and CountVectorizer methods have been employed efficiently to prepare the dataset for any similarity measurements. Cosine similarity algorithm has been employed as well with and without sigmoid and linear kernals. The achieved result proves that similarities between movies using TF-IDF with - Cosine similarity (sigmoid kernel) overcomes the TF-IDF with - Cosine similarity (linear_kernel) and Cosine similarity with CountVectorizer in collaborative filtering. The accuracy values of different machine learning models are validated with K-fold Cross Validator techniques. The performance evaluation has been measured using ROOT Mean Square Error and Mean Absolute Error. Five Machine learning algorithms (NormalPredictor, SVD, KNNBasic (with k=20 and K=10), KNNBasic (with sim_options), and NMF (in several rating scales)). Accuracies are finally been validated with 3 folds from each validator. The best achieved RMSE and MAE scores are using SVD (RMSE = 90%) and (MAE = 69%), followed by KNNBasic (with sim_options, K= 20), NMF, KNNBasic (K=20), KNNBasic (K=10), ending with KNNBasic(sim_options, K= 10). Keywords: Recommendation System, Sustainable Development, Artificial Intelligence, Collaborative Filtering, Content-Based, Cosine Similarity, Movies Recommendation, NLP, Machine Learning Application.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.221128.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.221128.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Sustainable Development: A Semantics-aware Trends for Movies Recommendation System using Modern NLP
Abstract Recommendation systems are an important feature in the proposed virtual life, where users are often stuck with choices most of the time and need help to be able to find what they are looking for. In this work, contentbased techniques have been employed in the proposed recommender system in two ways, a deep review for content and features contents such as (cast, crew, keywords, and genres) has been conducted. A preprocessing stage using TF-IDF and CountVectorizer methods have been employed efficiently to prepare the dataset for any similarity measurements. Cosine similarity algorithm has been employed as well with and without sigmoid and linear kernals. The achieved result proves that similarities between movies using TF-IDF with - Cosine similarity (sigmoid kernel) overcomes the TF-IDF with - Cosine similarity (linear_kernel) and Cosine similarity with CountVectorizer in collaborative filtering. The accuracy values of different machine learning models are validated with K-fold Cross Validator techniques. The performance evaluation has been measured using ROOT Mean Square Error and Mean Absolute Error. Five Machine learning algorithms (NormalPredictor, SVD, KNNBasic (with k=20 and K=10), KNNBasic (with sim_options), and NMF (in several rating scales)). Accuracies are finally been validated with 3 folds from each validator. The best achieved RMSE and MAE scores are using SVD (RMSE = 90%) and (MAE = 69%), followed by KNNBasic (with sim_options, K= 20), NMF, KNNBasic (K=20), KNNBasic (K=10), ending with KNNBasic(sim_options, K= 10). Keywords: Recommendation System, Sustainable Development, Artificial Intelligence, Collaborative Filtering, Content-Based, Cosine Similarity, Movies Recommendation, NLP, Machine Learning Application.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.