Alex J. Baldacchino, Miles I. Collins, M. Nielsen, T. Schmidt, D. McCamey, M. Tayebjee
{"title":"单线态裂变光伏:进展和有希望的途径","authors":"Alex J. Baldacchino, Miles I. Collins, M. Nielsen, T. Schmidt, D. McCamey, M. Tayebjee","doi":"10.1063/5.0080250","DOIUrl":null,"url":null,"abstract":"Singlet fission is a form of multiple exciton generation, which occurs in organic chromophores when a high-energy singlet exciton separates into two lower energy triplet excitons, each with approximately half the singlet energy. Since this process is spin-allowed, it can proceed on an ultrafast timescale of less than several picoseconds, outcompeting most other loss mechanisms and reaching quantitative yields approaching 200%. Due to this high quantum efficiency, the singlet fission process shows promise as a means of reducing thermalization losses in photovoltaic cells. This would potentially allow for efficiency improvements beyond the thermodynamic limit in a single junction cell. Efforts to incorporate this process into solar photovoltaic cells have spanned a wide range of device structures over the past decade. In this review, we compare and categorize these attempts in order to assess the state of the field and identify the most promising avenues of future research and development.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Singlet fission photovoltaics: Progress and promising pathways\",\"authors\":\"Alex J. Baldacchino, Miles I. Collins, M. Nielsen, T. Schmidt, D. McCamey, M. Tayebjee\",\"doi\":\"10.1063/5.0080250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singlet fission is a form of multiple exciton generation, which occurs in organic chromophores when a high-energy singlet exciton separates into two lower energy triplet excitons, each with approximately half the singlet energy. Since this process is spin-allowed, it can proceed on an ultrafast timescale of less than several picoseconds, outcompeting most other loss mechanisms and reaching quantitative yields approaching 200%. Due to this high quantum efficiency, the singlet fission process shows promise as a means of reducing thermalization losses in photovoltaic cells. This would potentially allow for efficiency improvements beyond the thermodynamic limit in a single junction cell. Efforts to incorporate this process into solar photovoltaic cells have spanned a wide range of device structures over the past decade. In this review, we compare and categorize these attempts in order to assess the state of the field and identify the most promising avenues of future research and development.\",\"PeriodicalId\":72559,\"journal\":{\"name\":\"Chemical physics reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical physics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0080250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0080250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Singlet fission photovoltaics: Progress and promising pathways
Singlet fission is a form of multiple exciton generation, which occurs in organic chromophores when a high-energy singlet exciton separates into two lower energy triplet excitons, each with approximately half the singlet energy. Since this process is spin-allowed, it can proceed on an ultrafast timescale of less than several picoseconds, outcompeting most other loss mechanisms and reaching quantitative yields approaching 200%. Due to this high quantum efficiency, the singlet fission process shows promise as a means of reducing thermalization losses in photovoltaic cells. This would potentially allow for efficiency improvements beyond the thermodynamic limit in a single junction cell. Efforts to incorporate this process into solar photovoltaic cells have spanned a wide range of device structures over the past decade. In this review, we compare and categorize these attempts in order to assess the state of the field and identify the most promising avenues of future research and development.