基于泊松的回归模型的预测区间

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2021-06-21 DOI:10.1002/wics.1568
Taeho Kim, Benjamin Lieberman, G. Luta, Edsel A. Peña
{"title":"基于泊松的回归模型的预测区间","authors":"Taeho Kim, Benjamin Lieberman, G. Luta, Edsel A. Peña","doi":"10.1002/wics.1568","DOIUrl":null,"url":null,"abstract":"This paper provides a review of the literature regarding methods for constructing prediction intervals for counting variables, with particular focus on those whose distributions are Poisson or derived from Poisson and with an over‐dispersion property. Independent and identically distributed models and regression models are both considered. The motivating problem for this review is that of predicting the number of daily and cumulative cases or deaths attributable to COVID‐19 at a future date.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1568","citationCount":"2","resultStr":"{\"title\":\"Prediction intervals for Poisson‐based regression models\",\"authors\":\"Taeho Kim, Benjamin Lieberman, G. Luta, Edsel A. Peña\",\"doi\":\"10.1002/wics.1568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a review of the literature regarding methods for constructing prediction intervals for counting variables, with particular focus on those whose distributions are Poisson or derived from Poisson and with an over‐dispersion property. Independent and identically distributed models and regression models are both considered. The motivating problem for this review is that of predicting the number of daily and cumulative cases or deaths attributable to COVID‐19 at a future date.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1568\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1568\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1568","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文回顾了关于构造计数变量预测区间方法的文献,特别关注那些分布为泊松或由泊松导出并具有过分散性质的预测区间。同时考虑了独立同分布模型和回归模型。本综述的激励问题是预测未来日期可归因于COVID - 19的每日和累计病例或死亡人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction intervals for Poisson‐based regression models
This paper provides a review of the literature regarding methods for constructing prediction intervals for counting variables, with particular focus on those whose distributions are Poisson or derived from Poisson and with an over‐dispersion property. Independent and identically distributed models and regression models are both considered. The motivating problem for this review is that of predicting the number of daily and cumulative cases or deaths attributable to COVID‐19 at a future date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1