I. El-Hallag, M. Ghanem, E. El-Mossalamy, Ahmed R. Tartour
{"title":"循环伏安法、卷积-反卷积伏安法和微分脉冲伏安法在中孔纳米铂电极上定量测定邻苯二酚","authors":"I. El-Hallag, M. Ghanem, E. El-Mossalamy, Ahmed R. Tartour","doi":"10.14447/jnmes.v25i4.a04","DOIUrl":null,"url":null,"abstract":"The electrochemical quantification of catechol (CC) was performed via cyclic voltammetry (CV), convolution-deconvolution voltammetry, and differential pulse voltammetry (DPV) at nanostructured mesoporous platinum film electrochemically deposited from a hexagonal liquid crystalline template of C16EO8 surfactant in 1.0 M HClO4.The cyclic voltammograms of catechol produced one oxidative peak in the forward sweep of potential coupled with a reductive peak on the reverse sweep potential. The effect of catechol concentration was examined using the various electrochemical methods mentioned before. The modified platinum electrode exhibits good sensitivity for the determination of catechol compound in 1.0 M HClO4. The best performance was found for i-t curve method developed from cyclic voltammetry of CC. It manifests a linear peak current response over the concentration range of 3 to 50 μM, with a detection limit of 2.11 μM and a quantification limit of 7.04 μM confirming the accuracy and sensitivity of this fast and simple method.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantitative Determination of Catechol via Cyclic Voltammetry, Convolution-Deconvolution Voltammetry, and Differential Pulse Voltammetry at a Mesoporous Nanostructured Platinum Electrode\",\"authors\":\"I. El-Hallag, M. Ghanem, E. El-Mossalamy, Ahmed R. Tartour\",\"doi\":\"10.14447/jnmes.v25i4.a04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical quantification of catechol (CC) was performed via cyclic voltammetry (CV), convolution-deconvolution voltammetry, and differential pulse voltammetry (DPV) at nanostructured mesoporous platinum film electrochemically deposited from a hexagonal liquid crystalline template of C16EO8 surfactant in 1.0 M HClO4.The cyclic voltammograms of catechol produced one oxidative peak in the forward sweep of potential coupled with a reductive peak on the reverse sweep potential. The effect of catechol concentration was examined using the various electrochemical methods mentioned before. The modified platinum electrode exhibits good sensitivity for the determination of catechol compound in 1.0 M HClO4. The best performance was found for i-t curve method developed from cyclic voltammetry of CC. It manifests a linear peak current response over the concentration range of 3 to 50 μM, with a detection limit of 2.11 μM and a quantification limit of 7.04 μM confirming the accuracy and sensitivity of this fast and simple method.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v25i4.a04\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v25i4.a04","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
摘要
邻苯二酚(CC)的电化学定量是通过循环伏安法(CV)、卷积反褶积伏安法等进行的,以及在1.0 M HClO4中由C16O8表面活性剂的六方液晶模板电化学沉积的纳米结构介孔铂膜上的微分脉冲伏安法(DPV)。邻苯二酚的循环伏安图在电位的正向扫描中产生一个氧化峰,在电位的反向扫描中产生还原峰。采用前面提到的各种电化学方法检测了邻苯二酚浓度的影响。修饰铂电极对1.0M盐酸中邻苯二酚类化合物的测定具有良好的灵敏度。由CC循环伏安法开发的i-t曲线法性能最好。它在3至50μM的浓度范围内表现出线性峰值电流响应,检测限为2.11μM,定量限为7.04μM,证实了该快速简便方法的准确性和灵敏度。
Quantitative Determination of Catechol via Cyclic Voltammetry, Convolution-Deconvolution Voltammetry, and Differential Pulse Voltammetry at a Mesoporous Nanostructured Platinum Electrode
The electrochemical quantification of catechol (CC) was performed via cyclic voltammetry (CV), convolution-deconvolution voltammetry, and differential pulse voltammetry (DPV) at nanostructured mesoporous platinum film electrochemically deposited from a hexagonal liquid crystalline template of C16EO8 surfactant in 1.0 M HClO4.The cyclic voltammograms of catechol produced one oxidative peak in the forward sweep of potential coupled with a reductive peak on the reverse sweep potential. The effect of catechol concentration was examined using the various electrochemical methods mentioned before. The modified platinum electrode exhibits good sensitivity for the determination of catechol compound in 1.0 M HClO4. The best performance was found for i-t curve method developed from cyclic voltammetry of CC. It manifests a linear peak current response over the concentration range of 3 to 50 μM, with a detection limit of 2.11 μM and a quantification limit of 7.04 μM confirming the accuracy and sensitivity of this fast and simple method.
期刊介绍:
This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.