C. Persello, J. D. Wegner, Ronny Hansch, D. Tuia, Pedram Ghamisi, M. Koeva, Gustau Camps-Valls
{"title":"支持可持续发展目标的深度学习和地球观测:当前方法、公开挑战和未来机遇","authors":"C. Persello, J. D. Wegner, Ronny Hansch, D. Tuia, Pedram Ghamisi, M. Koeva, Gustau Camps-Valls","doi":"10.1109/mgrs.2021.3136100","DOIUrl":null,"url":null,"abstract":"The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"172-200"},"PeriodicalIF":16.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities\",\"authors\":\"C. Persello, J. D. Wegner, Ronny Hansch, D. Tuia, Pedram Ghamisi, M. Koeva, Gustau Camps-Valls\",\"doi\":\"10.1109/mgrs.2021.3136100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":\"10 1\",\"pages\":\"172-200\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/mgrs.2021.3136100\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/mgrs.2021.3136100","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities
The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.
期刊介绍:
The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.