基于逆方法的体系结构频率分离

Q4 Chemical Engineering Applied and Computational Mechanics Pub Date : 2021-07-16 DOI:10.22055/JACM.2021.37807.3093
D. Inman, Aishwarya Gunasekar
{"title":"基于逆方法的体系结构频率分离","authors":"D. Inman, Aishwarya Gunasekar","doi":"10.22055/JACM.2021.37807.3093","DOIUrl":null,"url":null,"abstract":"A major goal in the design of architected structures for low frequency vibration applications (also called mechanical metamaterials, metastructures, elastic metamaterials, auxetic structures) is the creation of regions in the frequency domain where vibration amplitudes are minimal, regardless of the source of excitation. The idea is to provide vibration suppression in manmade structures. The proposed effort is to examine approaches to produce straightforward methods of designing a given mechanical metamaterial to have a specified gap in the frequency spectrum by adjusting its local mass and stiffness values of the individual cells. Previous work in mechanical metamaterial design has focused on using optimization procedures concerned with global vibration suppression. Here our efforts are focused on frequency separation using two direct approaches by interpreting techniques from the areas of model updating and inverse eigenvalue solutions. Rather than examining the overall suppression of vibration, creating specific bandgaps eliminates the possibility of resonance occurring in a given range of excitation frequencies.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Separation in Architected Structures using Inverse Methods\",\"authors\":\"D. Inman, Aishwarya Gunasekar\",\"doi\":\"10.22055/JACM.2021.37807.3093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major goal in the design of architected structures for low frequency vibration applications (also called mechanical metamaterials, metastructures, elastic metamaterials, auxetic structures) is the creation of regions in the frequency domain where vibration amplitudes are minimal, regardless of the source of excitation. The idea is to provide vibration suppression in manmade structures. The proposed effort is to examine approaches to produce straightforward methods of designing a given mechanical metamaterial to have a specified gap in the frequency spectrum by adjusting its local mass and stiffness values of the individual cells. Previous work in mechanical metamaterial design has focused on using optimization procedures concerned with global vibration suppression. Here our efforts are focused on frequency separation using two direct approaches by interpreting techniques from the areas of model updating and inverse eigenvalue solutions. Rather than examining the overall suppression of vibration, creating specific bandgaps eliminates the possibility of resonance occurring in a given range of excitation frequencies.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2021.37807.3093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.37807.3093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

设计用于低频振动应用的建筑结构(也称为机械超材料、超结构、弹性超材料、减振结构)的主要目标是在频率域中创建振动幅度最小的区域,而不管激励源如何。这个想法是在人造结构中提供振动抑制。提出的努力是研究方法,以产生直接的方法来设计给定的机械超材料,通过调整其局部质量和单个单元的刚度值来在频谱中具有指定的间隙。先前在机械超材料设计方面的工作主要集中在使用全局振动抑制的优化程序。在这里,我们的努力集中在频率分离上,使用两种直接的方法,通过解释模型更新和逆特征值解决方案领域的技术。而不是检查振动的整体抑制,创造特定的带隙消除了在给定的激励频率范围内发生共振的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency Separation in Architected Structures using Inverse Methods
A major goal in the design of architected structures for low frequency vibration applications (also called mechanical metamaterials, metastructures, elastic metamaterials, auxetic structures) is the creation of regions in the frequency domain where vibration amplitudes are minimal, regardless of the source of excitation. The idea is to provide vibration suppression in manmade structures. The proposed effort is to examine approaches to produce straightforward methods of designing a given mechanical metamaterial to have a specified gap in the frequency spectrum by adjusting its local mass and stiffness values of the individual cells. Previous work in mechanical metamaterial design has focused on using optimization procedures concerned with global vibration suppression. Here our efforts are focused on frequency separation using two direct approaches by interpreting techniques from the areas of model updating and inverse eigenvalue solutions. Rather than examining the overall suppression of vibration, creating specific bandgaps eliminates the possibility of resonance occurring in a given range of excitation frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
期刊最新文献
Compressor cascade correlations modelling at design points using artificial neural networks Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation Higher order computational model considering the effects of transverse normal strain and 2-parameter elastic foundation for the bending of laminated panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1