{"title":"物联网设备的简单链自动机随机数生成器","authors":"Pál Dömösi, Géza Horváth, Norbert Tihanyi","doi":"10.1007/s00236-023-00440-w","DOIUrl":null,"url":null,"abstract":"<div><p>Random numbers are very important in many fields of computer science. Generating high-quality random numbers using only basic arithmetic operations is challenging, especially for devices with limited hardware capabilities, such as Internet of Things (IoT) devices. In this paper, we present a novel pseudorandom number generator, the simple chain automaton random number generator (SCARNG), based on compositions of abstract automata. The main advantage of the presented algorithm is its simple structure that can be implemented easily for very low computing capacity IoT systems, FPGAs or GPU hardware. The generated random numbers demonstrate promising statistical behavior and satisfy the NIST statistical suite requirements, highlighting the potential of the SCARNG for practical applications.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"60 3","pages":"317 - 329"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-023-00440-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Simple chain automaton random number generator for IoT devices\",\"authors\":\"Pál Dömösi, Géza Horváth, Norbert Tihanyi\",\"doi\":\"10.1007/s00236-023-00440-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Random numbers are very important in many fields of computer science. Generating high-quality random numbers using only basic arithmetic operations is challenging, especially for devices with limited hardware capabilities, such as Internet of Things (IoT) devices. In this paper, we present a novel pseudorandom number generator, the simple chain automaton random number generator (SCARNG), based on compositions of abstract automata. The main advantage of the presented algorithm is its simple structure that can be implemented easily for very low computing capacity IoT systems, FPGAs or GPU hardware. The generated random numbers demonstrate promising statistical behavior and satisfy the NIST statistical suite requirements, highlighting the potential of the SCARNG for practical applications.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"60 3\",\"pages\":\"317 - 329\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-023-00440-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-023-00440-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-023-00440-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Simple chain automaton random number generator for IoT devices
Random numbers are very important in many fields of computer science. Generating high-quality random numbers using only basic arithmetic operations is challenging, especially for devices with limited hardware capabilities, such as Internet of Things (IoT) devices. In this paper, we present a novel pseudorandom number generator, the simple chain automaton random number generator (SCARNG), based on compositions of abstract automata. The main advantage of the presented algorithm is its simple structure that can be implemented easily for very low computing capacity IoT systems, FPGAs or GPU hardware. The generated random numbers demonstrate promising statistical behavior and satisfy the NIST statistical suite requirements, highlighting the potential of the SCARNG for practical applications.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.