自动测速系统在电梯调速器中的应用

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Building Services Engineering Research & Technology Pub Date : 2022-04-24 DOI:10.1177/01436244221090586
Marco Tomé, P. Beirão, L. Roseiro, Frederico Santos
{"title":"自动测速系统在电梯调速器中的应用","authors":"Marco Tomé, P. Beirão, L. Roseiro, Frederico Santos","doi":"10.1177/01436244221090586","DOIUrl":null,"url":null,"abstract":"All around the world, modern elevators transport safely and comfortably millions of passengers and freight each day. Since modern elevators emerged at the beginning of the 19th century, several advances have risen in this transportation system. Among them, safety conditions were significantly improved. Therefore, modern elevators must be equipped with safety protection systems to assure safety conditions and avoid accidents. An overspeed governor is one of the components of such a safety system. It acts as a stopping mechanism when the elevator car reaches an excessive velocity, known as tripping speed. When the tripping speed is reached, the overspeed governor is mechanically locked and halts the rope, thus stopping the elevator car. This paper describes the development of a new measuring system able to measure the trigger velocity of an overspeed governor with the help of a graphical interface available on a mobile electronic device (smartphone or tablet). Practical application: A new overspeed governor velocity measuring system uses a mobile electronic device for non-contact velocity measurement. This new process may replace the inaccurate measuring system currently employed by maintenance technicians, thus increasing its reliability. The main objective consists of rigorously testing the operation of overspeed governors. The developed system guarantees the automatic execution of the test under several anomalous operating situations, thus allowing the user to have real-time access to the test data obtained through a graphical interface available on a mobile electronic device.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"43 1","pages":"559 - 569"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic velocity measurement system applied to elevator overspeed governors\",\"authors\":\"Marco Tomé, P. Beirão, L. Roseiro, Frederico Santos\",\"doi\":\"10.1177/01436244221090586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All around the world, modern elevators transport safely and comfortably millions of passengers and freight each day. Since modern elevators emerged at the beginning of the 19th century, several advances have risen in this transportation system. Among them, safety conditions were significantly improved. Therefore, modern elevators must be equipped with safety protection systems to assure safety conditions and avoid accidents. An overspeed governor is one of the components of such a safety system. It acts as a stopping mechanism when the elevator car reaches an excessive velocity, known as tripping speed. When the tripping speed is reached, the overspeed governor is mechanically locked and halts the rope, thus stopping the elevator car. This paper describes the development of a new measuring system able to measure the trigger velocity of an overspeed governor with the help of a graphical interface available on a mobile electronic device (smartphone or tablet). Practical application: A new overspeed governor velocity measuring system uses a mobile electronic device for non-contact velocity measurement. This new process may replace the inaccurate measuring system currently employed by maintenance technicians, thus increasing its reliability. The main objective consists of rigorously testing the operation of overspeed governors. The developed system guarantees the automatic execution of the test under several anomalous operating situations, thus allowing the user to have real-time access to the test data obtained through a graphical interface available on a mobile electronic device.\",\"PeriodicalId\":50724,\"journal\":{\"name\":\"Building Services Engineering Research & Technology\",\"volume\":\"43 1\",\"pages\":\"559 - 569\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01436244221090586\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221090586","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在世界各地,现代电梯每天安全舒适地运送数百万乘客和货物。自从19世纪初出现现代电梯以来,这一交通系统取得了一些进步。其中,安全条件明显改善。因此,现代电梯必须配备安全保护系统,以确保安全条件,避免事故发生。超速调节器是这种安全系统的组成部分之一。当电梯轿厢达到过快速度时,它起到了停止机构的作用,即跳闸速度。当达到跳闸速度时,超速调节器被机械锁定并停止绳索,从而停止电梯轿厢。本文介绍了一种新的测量系统的开发,该系统能够借助移动电子设备(智能手机或平板电脑)上的图形界面来测量超速调速器的触发速度。实际应用:一种新型调速器测速系统采用移动电子设备进行非接触式测速。这种新工艺可以取代维修技术人员目前使用的不准确的测量系统,从而提高其可靠性。主要目标包括严格测试超速调速器的操作。所开发的系统保证在几种异常操作情况下自动执行测试,从而允许用户实时访问通过移动电子设备上可用的图形界面获得的测试数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic velocity measurement system applied to elevator overspeed governors
All around the world, modern elevators transport safely and comfortably millions of passengers and freight each day. Since modern elevators emerged at the beginning of the 19th century, several advances have risen in this transportation system. Among them, safety conditions were significantly improved. Therefore, modern elevators must be equipped with safety protection systems to assure safety conditions and avoid accidents. An overspeed governor is one of the components of such a safety system. It acts as a stopping mechanism when the elevator car reaches an excessive velocity, known as tripping speed. When the tripping speed is reached, the overspeed governor is mechanically locked and halts the rope, thus stopping the elevator car. This paper describes the development of a new measuring system able to measure the trigger velocity of an overspeed governor with the help of a graphical interface available on a mobile electronic device (smartphone or tablet). Practical application: A new overspeed governor velocity measuring system uses a mobile electronic device for non-contact velocity measurement. This new process may replace the inaccurate measuring system currently employed by maintenance technicians, thus increasing its reliability. The main objective consists of rigorously testing the operation of overspeed governors. The developed system guarantees the automatic execution of the test under several anomalous operating situations, thus allowing the user to have real-time access to the test data obtained through a graphical interface available on a mobile electronic device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building Services Engineering Research & Technology
Building Services Engineering Research & Technology 工程技术-结构与建筑技术
CiteScore
4.30
自引率
5.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.
期刊最新文献
Frost suppression performance of an air source heat pump using sensible heat from indoor air to preheat outdoor air A revised PMV model: From a physiological standpoint Prediction models of bioaerosols inside office buildings: A field study investigation An overheating criterion for bedrooms in temperate climates: Derivation and application The influence of different offset modes on the drainage characteristics of a double stack drainage system in a high-rise building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1