利用吸水带估算土壤含水量

Q3 Social Sciences Geomatica Pub Date : 2019-09-01 DOI:10.1139/geomat-2018-0020
M. Mobasheri, M. Amani, Mahin Beikpour, S. Mahdavi
{"title":"利用吸水带估算土壤含水量","authors":"M. Mobasheri, M. Amani, Mahin Beikpour, S. Mahdavi","doi":"10.1139/geomat-2018-0020","DOIUrl":null,"url":null,"abstract":"Soil moisture content (SMC) is a crucial component in various environmental studies. Although many models have been proposed for SMC estimation, developing new models for accurate estimation of SMC is still an interesting subject. This study aimed to develop new models for SMC estimation using the water absorption bands in the spectral signatures of three different soil types: loam, silty loam, and sandy loam. Based on the three absorption bands (i.e., 1400, 1900, and 2200 nm) and regression analyses, six approaches were considered. These scenarios were generally based on the reflectance value and its logarithm, as well as the difference between the wet and dry reflectance values for the absorption bands. Finally, 24 models were developed for SMC estimation from the three different soil types, as well as the entire soil samples. The most accurate SMC, as indicated by the lowest root mean squared error (RMSE) and the highest correlation coefficient (r), was obtained from the model developed using the logarithm of the average values reflectance in the three water absorption bands for sandy loam (RMSE = 0.31 g/kg, r = 0.99). Overall, using the spectrometry data derived in the lab, the results of the proposed models were promising and demonstrate great potential for SMC estimation using spectral data collected by satellites in the future studies.","PeriodicalId":35938,"journal":{"name":"Geomatica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/geomat-2018-0020","citationCount":"2","resultStr":"{\"title\":\"Soil moisture content estimation using water absorption bands\",\"authors\":\"M. Mobasheri, M. Amani, Mahin Beikpour, S. Mahdavi\",\"doi\":\"10.1139/geomat-2018-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil moisture content (SMC) is a crucial component in various environmental studies. Although many models have been proposed for SMC estimation, developing new models for accurate estimation of SMC is still an interesting subject. This study aimed to develop new models for SMC estimation using the water absorption bands in the spectral signatures of three different soil types: loam, silty loam, and sandy loam. Based on the three absorption bands (i.e., 1400, 1900, and 2200 nm) and regression analyses, six approaches were considered. These scenarios were generally based on the reflectance value and its logarithm, as well as the difference between the wet and dry reflectance values for the absorption bands. Finally, 24 models were developed for SMC estimation from the three different soil types, as well as the entire soil samples. The most accurate SMC, as indicated by the lowest root mean squared error (RMSE) and the highest correlation coefficient (r), was obtained from the model developed using the logarithm of the average values reflectance in the three water absorption bands for sandy loam (RMSE = 0.31 g/kg, r = 0.99). Overall, using the spectrometry data derived in the lab, the results of the proposed models were promising and demonstrate great potential for SMC estimation using spectral data collected by satellites in the future studies.\",\"PeriodicalId\":35938,\"journal\":{\"name\":\"Geomatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/geomat-2018-0020\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/geomat-2018-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/geomat-2018-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

土壤含水量(SMC)是各种环境研究中的重要组成部分。尽管已经提出了许多用于SMC估计的模型,但开发用于SMC精确估计的新模型仍然是一个有趣的课题。本研究旨在利用三种不同土壤类型(壤土、粉质壤土和砂质壤土)光谱特征中的吸水带,开发SMC估算的新模型。基于三个吸收带(即1400、1900和2200 nm)和回归分析,考虑了六种方法。这些场景通常基于反射率值及其对数,以及吸收带的湿反射率值和干反射率值之间的差异。最后,从三种不同的土壤类型以及整个土壤样本中开发了24个SMC估算模型。由最低均方根误差(RMSE)和最高相关系数(r)表示的最准确SMC是从使用沙壤土三个吸水带中反射率平均值的对数开发的模型中获得的(RMSE = 0.31 g/kg,r = 0.99)。总体而言,使用实验室中获得的光谱数据,所提出的模型的结果是有希望的,并在未来的研究中证明了使用卫星收集的光谱数据进行SMC估计的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soil moisture content estimation using water absorption bands
Soil moisture content (SMC) is a crucial component in various environmental studies. Although many models have been proposed for SMC estimation, developing new models for accurate estimation of SMC is still an interesting subject. This study aimed to develop new models for SMC estimation using the water absorption bands in the spectral signatures of three different soil types: loam, silty loam, and sandy loam. Based on the three absorption bands (i.e., 1400, 1900, and 2200 nm) and regression analyses, six approaches were considered. These scenarios were generally based on the reflectance value and its logarithm, as well as the difference between the wet and dry reflectance values for the absorption bands. Finally, 24 models were developed for SMC estimation from the three different soil types, as well as the entire soil samples. The most accurate SMC, as indicated by the lowest root mean squared error (RMSE) and the highest correlation coefficient (r), was obtained from the model developed using the logarithm of the average values reflectance in the three water absorption bands for sandy loam (RMSE = 0.31 g/kg, r = 0.99). Overall, using the spectrometry data derived in the lab, the results of the proposed models were promising and demonstrate great potential for SMC estimation using spectral data collected by satellites in the future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatica
Geomatica Social Sciences-Geography, Planning and Development
CiteScore
1.50
自引率
0.00%
发文量
7
期刊介绍: Geomatica (formerly CISM Journal ACSGC), is the official quarterly publication of the Canadian Institute of Geomatics. It is the oldest surveying and mapping publication in Canada and was first published in 1922 as the Journal of the Dominion Land Surveyors’ Association. Geomatica is dedicated to the dissemination of information on technical advances in the geomatics sciences. The internationally respected publication contains special features, notices of conferences, calendar of event, articles on personalities, review of current books, industry news and new products, all of which keep the publication lively and informative.
期刊最新文献
Soil Salinity Mapping Using Remote Sensing and GIS A deep transfer learning-based damage assessment on post-event very high-resolution orthophotos Building detection using a dense attention network from LiDAR and image data Exploring five indicators for the quality of OpenStreetMap road networks: a case study of Québec, Canada Fonction d’appartenance et pouvoir d’expression topologique entre objets aux limites fixes et floues dans le processus d’affectation des terres au Gabon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1