Baraboo的修订物源、沉积环境和最大沉积年龄(

IF 1.5 4区 地球科学 Q2 GEOLOGY Journal of Geology Pub Date : 2021-01-01 DOI:10.1086/713687
E. Stewart, L. Brengman, E. Stewart
{"title":"Baraboo的修订物源、沉积环境和最大沉积年龄(","authors":"E. Stewart, L. Brengman, E. Stewart","doi":"10.1086/713687","DOIUrl":null,"url":null,"abstract":"Up to 2 km of siliciclastic and chemical sedimentary rocks, metamorphosed to greenschist facies, are preserved in the Baraboo Hills of southern Wisconsin. The strata compose two sedimentary successions separated by an angular unconformity. The lower succession includes the Baraboo quartzite, Seeley slate, and Freedom Formation, and the upper includes the Dake quartzite and Rowley Creek slate. Despite being studied for more than 100 y, the exposed section is only recently subdivided into informal members based on identification of sedimentary lithofacies and geologic mapping. This study integrates detrital zircon and paleocurrent analyses with sedimentologic and stratigraphic observations derived from detailed field mapping of the Baraboo and Dake quartzites. Our purpose is twofold: (1) characterize lithofacies of the Baraboo quartzite to interpret the environments of deposition for this unit and (2) evaluate sediment provenance and constrain depositional age. Lithofacies, paleocurrent, and detrital zircon U-Pb analyses of the Baraboo quartzite record fluvial braid plain, eolian, and fluvial-, tide- and wave-influenced deltaic depositional environments with sediments sourced from the north and deposited after 1714 ± 17 Ma. Lithofacies compose two backstepping alluvial to marine successions separated by a thick, laterally continuous coastal dune deposit. North-directed paleocurrents and detrital zircon ages confirm the Dake quartzite is a distinct unit with maximum depositional age of less than 1630.1 ± 8.6 Ma. Deposition of the Dake quartzite reflects basement uplift that postdates deposition of the Baraboo quartzite. The hiatus represented by the unconformity beneath the Dake quartzite is unconstrained and may represent more than 100 My.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":"129 1","pages":"1 - 31"},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/713687","citationCount":"3","resultStr":"{\"title\":\"Revised Provenance, Depositional Environment, and Maximum Depositional Age for the Baraboo (\",\"authors\":\"E. Stewart, L. Brengman, E. Stewart\",\"doi\":\"10.1086/713687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Up to 2 km of siliciclastic and chemical sedimentary rocks, metamorphosed to greenschist facies, are preserved in the Baraboo Hills of southern Wisconsin. The strata compose two sedimentary successions separated by an angular unconformity. The lower succession includes the Baraboo quartzite, Seeley slate, and Freedom Formation, and the upper includes the Dake quartzite and Rowley Creek slate. Despite being studied for more than 100 y, the exposed section is only recently subdivided into informal members based on identification of sedimentary lithofacies and geologic mapping. This study integrates detrital zircon and paleocurrent analyses with sedimentologic and stratigraphic observations derived from detailed field mapping of the Baraboo and Dake quartzites. Our purpose is twofold: (1) characterize lithofacies of the Baraboo quartzite to interpret the environments of deposition for this unit and (2) evaluate sediment provenance and constrain depositional age. Lithofacies, paleocurrent, and detrital zircon U-Pb analyses of the Baraboo quartzite record fluvial braid plain, eolian, and fluvial-, tide- and wave-influenced deltaic depositional environments with sediments sourced from the north and deposited after 1714 ± 17 Ma. Lithofacies compose two backstepping alluvial to marine successions separated by a thick, laterally continuous coastal dune deposit. North-directed paleocurrents and detrital zircon ages confirm the Dake quartzite is a distinct unit with maximum depositional age of less than 1630.1 ± 8.6 Ma. Deposition of the Dake quartzite reflects basement uplift that postdates deposition of the Baraboo quartzite. The hiatus represented by the unconformity beneath the Dake quartzite is unconstrained and may represent more than 100 My.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":\"129 1\",\"pages\":\"1 - 31\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/713687\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/713687\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/713687","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

威斯康星州南部的巴拉博山保存着长达2公里的变质为绿片岩相的硅屑和化学沉积岩。地层由两个由角度不整合区分开的沉积序列组成。下层序包括Baraboo石英岩、Seeley板岩和Freedom组,上层序包括Dake石英岩和Rowley Creek板岩。尽管研究已超过100年,但直到最近才根据沉积岩相识别和地质填图将暴露剖面细分为非正式成员。本研究将碎屑锆石和古流分析与来自Baraboo和Dake石英岩详细野外测绘的沉积学和地层学观察相结合。我们的目的有两个:(1)表征Baraboo石英岩的岩相特征,以解释该单元的沉积环境;(2)评估沉积物的物源并限制沉积时代。Baraboo石英岩的岩相、古流和碎屑锆石U-Pb分析记录了河流辫状平原、风成、河流、潮汐和波浪影响的三角洲沉积环境,沉积物来自北方,沉积时间为1714±17 Ma。岩相由两个后退的冲积到海相序列组成,由一个厚的、横向连续的海岸沙丘沉积物隔开。古北流和碎屑锆石年龄证实了大克石英岩是一个独特的单元,最大沉积年龄小于1630.1±8.6 Ma。达克石英岩的沉积反映了基底隆升,晚于巴拉布石英岩的沉积。达克石英岩下的不整合面所代表的裂孔是不受约束的,可能超过100米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revised Provenance, Depositional Environment, and Maximum Depositional Age for the Baraboo (
Up to 2 km of siliciclastic and chemical sedimentary rocks, metamorphosed to greenschist facies, are preserved in the Baraboo Hills of southern Wisconsin. The strata compose two sedimentary successions separated by an angular unconformity. The lower succession includes the Baraboo quartzite, Seeley slate, and Freedom Formation, and the upper includes the Dake quartzite and Rowley Creek slate. Despite being studied for more than 100 y, the exposed section is only recently subdivided into informal members based on identification of sedimentary lithofacies and geologic mapping. This study integrates detrital zircon and paleocurrent analyses with sedimentologic and stratigraphic observations derived from detailed field mapping of the Baraboo and Dake quartzites. Our purpose is twofold: (1) characterize lithofacies of the Baraboo quartzite to interpret the environments of deposition for this unit and (2) evaluate sediment provenance and constrain depositional age. Lithofacies, paleocurrent, and detrital zircon U-Pb analyses of the Baraboo quartzite record fluvial braid plain, eolian, and fluvial-, tide- and wave-influenced deltaic depositional environments with sediments sourced from the north and deposited after 1714 ± 17 Ma. Lithofacies compose two backstepping alluvial to marine successions separated by a thick, laterally continuous coastal dune deposit. North-directed paleocurrents and detrital zircon ages confirm the Dake quartzite is a distinct unit with maximum depositional age of less than 1630.1 ± 8.6 Ma. Deposition of the Dake quartzite reflects basement uplift that postdates deposition of the Baraboo quartzite. The hiatus represented by the unconformity beneath the Dake quartzite is unconstrained and may represent more than 100 My.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geology
Journal of Geology 地学-地质学
CiteScore
3.50
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.
期刊最新文献
Temperature is a cryptic factor shaping the geographical pattern of genetic variation in Ceratophyllum demersum across a subtropical freshwater lake. Contrasting detrital feldspar Pb isotope ratios and zircon geochronology to distinguish proximal vs. distal transport Eocene Andesitic Adakite from Lone Mountain, Southwestern Montana Enhancing DNA barcode reference libraries by harvesting terrestrial arthropods at the Smithsonian's National Museum of Natural History. Assessment of the Web Site Availability and Content of Pediatric Ophthalmology Fellowship Programs: A Cross-Sectional Nationwide Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1