Wei Du, Samad M.E. Sepasgozar, A. Khan, S. Shirowzhan, Juan Garzon Romero
{"title":"开发用于施工风险管理和测量用户意图的互动式桩训练模块","authors":"Wei Du, Samad M.E. Sepasgozar, A. Khan, S. Shirowzhan, Juan Garzon Romero","doi":"10.1108/ci-10-2022-0269","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to develop a novel theoretical model for predicting the users’ intention to use virtual tools designed for construction risk evaluation. Risk evaluation is a vital objective for construction managers. This paper intends to examine critical factors such as potential benefits, motivation, performance expectancy and rich sources of information that may affect users’ intention to use virtual technology.\n\n\nDesign/methodology/approach\nA pile training module (PTM) was developed in a virtual environment to analyze the proposed virtual reality-technology acceptance model (VR-TAM) factors. Further, a questionnaire survey was conducted with the participation of 102 construction professionals in China to validate the proposed VR-TAM model and PTM tool. The retrieved data was computed to test the proposed model by using partial least squares structural equation modeling and the significance of the PTM tool in a virtual environment.\n\n\nFindings\nThe results of this study reveal that high-significance paths represent five relationships between crucial factors affecting users’ intention to use a selected virtual reality (VR) module. Five of seven hypothesis paths were significant with acceptable t-values. By quantitative measurement of high-significance paths, this research has found that each factor under VR-TAM has received significant loadings, with many above the 0.7 threshold mark and others around 0.6. The top factors include “motivation” and “benefits” and have multiplier effects on “intention to use” as the source factors.\n\n\nPractical implications\nThe finding of this study presents crucial factors for VR adoption, and the proposed VR-TAM model contributes to the body of knowledge toward managing construction risk using pre-optimization and understanding in a virtual environment. This study supports Chinese construction company managers in effectively using VR technology in their construction projects for risk assessment and management.\n\n\nOriginality/value\nThis study offered the development of a novel VR-TAM integrated with risk assessment techniques for piling processes. Further, the developed model was analyzed by using a survey of Chinese construction professionals to collect perceptions about the modified theoretical model of VR-TAM.\n","PeriodicalId":45580,"journal":{"name":"Construction Innovation-England","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an interactive pile training module for construction risk management and gaging users’ intentions\",\"authors\":\"Wei Du, Samad M.E. Sepasgozar, A. Khan, S. Shirowzhan, Juan Garzon Romero\",\"doi\":\"10.1108/ci-10-2022-0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to develop a novel theoretical model for predicting the users’ intention to use virtual tools designed for construction risk evaluation. Risk evaluation is a vital objective for construction managers. This paper intends to examine critical factors such as potential benefits, motivation, performance expectancy and rich sources of information that may affect users’ intention to use virtual technology.\\n\\n\\nDesign/methodology/approach\\nA pile training module (PTM) was developed in a virtual environment to analyze the proposed virtual reality-technology acceptance model (VR-TAM) factors. Further, a questionnaire survey was conducted with the participation of 102 construction professionals in China to validate the proposed VR-TAM model and PTM tool. The retrieved data was computed to test the proposed model by using partial least squares structural equation modeling and the significance of the PTM tool in a virtual environment.\\n\\n\\nFindings\\nThe results of this study reveal that high-significance paths represent five relationships between crucial factors affecting users’ intention to use a selected virtual reality (VR) module. Five of seven hypothesis paths were significant with acceptable t-values. By quantitative measurement of high-significance paths, this research has found that each factor under VR-TAM has received significant loadings, with many above the 0.7 threshold mark and others around 0.6. The top factors include “motivation” and “benefits” and have multiplier effects on “intention to use” as the source factors.\\n\\n\\nPractical implications\\nThe finding of this study presents crucial factors for VR adoption, and the proposed VR-TAM model contributes to the body of knowledge toward managing construction risk using pre-optimization and understanding in a virtual environment. This study supports Chinese construction company managers in effectively using VR technology in their construction projects for risk assessment and management.\\n\\n\\nOriginality/value\\nThis study offered the development of a novel VR-TAM integrated with risk assessment techniques for piling processes. Further, the developed model was analyzed by using a survey of Chinese construction professionals to collect perceptions about the modified theoretical model of VR-TAM.\\n\",\"PeriodicalId\":45580,\"journal\":{\"name\":\"Construction Innovation-England\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Innovation-England\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ci-10-2022-0269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Innovation-England","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ci-10-2022-0269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Developing an interactive pile training module for construction risk management and gaging users’ intentions
Purpose
This study aims to develop a novel theoretical model for predicting the users’ intention to use virtual tools designed for construction risk evaluation. Risk evaluation is a vital objective for construction managers. This paper intends to examine critical factors such as potential benefits, motivation, performance expectancy and rich sources of information that may affect users’ intention to use virtual technology.
Design/methodology/approach
A pile training module (PTM) was developed in a virtual environment to analyze the proposed virtual reality-technology acceptance model (VR-TAM) factors. Further, a questionnaire survey was conducted with the participation of 102 construction professionals in China to validate the proposed VR-TAM model and PTM tool. The retrieved data was computed to test the proposed model by using partial least squares structural equation modeling and the significance of the PTM tool in a virtual environment.
Findings
The results of this study reveal that high-significance paths represent five relationships between crucial factors affecting users’ intention to use a selected virtual reality (VR) module. Five of seven hypothesis paths were significant with acceptable t-values. By quantitative measurement of high-significance paths, this research has found that each factor under VR-TAM has received significant loadings, with many above the 0.7 threshold mark and others around 0.6. The top factors include “motivation” and “benefits” and have multiplier effects on “intention to use” as the source factors.
Practical implications
The finding of this study presents crucial factors for VR adoption, and the proposed VR-TAM model contributes to the body of knowledge toward managing construction risk using pre-optimization and understanding in a virtual environment. This study supports Chinese construction company managers in effectively using VR technology in their construction projects for risk assessment and management.
Originality/value
This study offered the development of a novel VR-TAM integrated with risk assessment techniques for piling processes. Further, the developed model was analyzed by using a survey of Chinese construction professionals to collect perceptions about the modified theoretical model of VR-TAM.