面板数据模型中序列相关性的稳健性检验

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2022-07-15 DOI:10.1080/07474938.2022.2091362
B. Chen
{"title":"面板数据模型中序列相关性的稳健性检验","authors":"B. Chen","doi":"10.1080/07474938.2022.2091362","DOIUrl":null,"url":null,"abstract":"Abstract We consider a new nonparametric test for serial correlation of unknown form in the estimated residuals of a panel regression model, where individual and time effects can be fixed or random, and the panel data can be balanced or unbalanced. Our test is robust against potential weak error cross-sectional dependence and error serial dependence in higher-order moments. This is in contrast to existing tests for serial correlation in panel data models, which assume error components to be cross-sectionally and serially independent. Our test has an asymptotic N(0, 1) distribution under the null hypothesis and is consistent against serial correlation of unknown form. No common alternative is assumed and hence our test allows for substantial inhomogeneity in serial correlation across individuals. A simulation study highlights the merits of the proposed test relative to a variety of existing tests in the literature. We apply the new test to the empirical study of Wolfers on the relationship between unilateral divorce laws and divorce rates and find strong evidence against serial uncorrelatedness even controlling for the fixed effect.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"1095 - 1112"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust test for serial correlation in panel data models\",\"authors\":\"B. Chen\",\"doi\":\"10.1080/07474938.2022.2091362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a new nonparametric test for serial correlation of unknown form in the estimated residuals of a panel regression model, where individual and time effects can be fixed or random, and the panel data can be balanced or unbalanced. Our test is robust against potential weak error cross-sectional dependence and error serial dependence in higher-order moments. This is in contrast to existing tests for serial correlation in panel data models, which assume error components to be cross-sectionally and serially independent. Our test has an asymptotic N(0, 1) distribution under the null hypothesis and is consistent against serial correlation of unknown form. No common alternative is assumed and hence our test allows for substantial inhomogeneity in serial correlation across individuals. A simulation study highlights the merits of the proposed test relative to a variety of existing tests in the literature. We apply the new test to the empirical study of Wolfers on the relationship between unilateral divorce laws and divorce rates and find strong evidence against serial uncorrelatedness even controlling for the fixed effect.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"41 1\",\"pages\":\"1095 - 1112\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2022.2091362\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2091362","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们考虑了一种新的非参数检验,用于面板回归模型估计残差中未知形式的序列相关性,其中个体和时间效应可以是固定的或随机的,面板数据可以是平衡的或不平衡的。我们的测试对高阶矩中潜在的弱误差截面相关性和误差序列相关性是稳健的。这与面板数据模型中现有的串行相关性测试形成了对比,后者假设误差分量在横截面和串行上是独立的。我们的测试在零假设下具有渐近N(0,1)分布,并且与未知形式的序列相关性一致。没有假设常见的替代方案,因此我们的测试允许个体之间的序列相关性存在显著的不均匀性。一项模拟研究强调了所提出的测试相对于文献中各种现有测试的优点。我们将新的检验应用于Wolfers关于单方面离婚法与离婚率之间关系的实证研究,并发现了强有力的证据来证明连续不可延迟性甚至控制了固定效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust test for serial correlation in panel data models
Abstract We consider a new nonparametric test for serial correlation of unknown form in the estimated residuals of a panel regression model, where individual and time effects can be fixed or random, and the panel data can be balanced or unbalanced. Our test is robust against potential weak error cross-sectional dependence and error serial dependence in higher-order moments. This is in contrast to existing tests for serial correlation in panel data models, which assume error components to be cross-sectionally and serially independent. Our test has an asymptotic N(0, 1) distribution under the null hypothesis and is consistent against serial correlation of unknown form. No common alternative is assumed and hence our test allows for substantial inhomogeneity in serial correlation across individuals. A simulation study highlights the merits of the proposed test relative to a variety of existing tests in the literature. We apply the new test to the empirical study of Wolfers on the relationship between unilateral divorce laws and divorce rates and find strong evidence against serial uncorrelatedness even controlling for the fixed effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1