2021年世界机器人大赛:无校准SSVEP中BCI控制机器人比赛获胜方法概述

Rui Bian, Dongrui Wu
{"title":"2021年世界机器人大赛:无校准SSVEP中BCI控制机器人比赛获胜方法概述","authors":"Rui Bian, Dongrui Wu","doi":"10.26599/BSA.2022.9050002","DOIUrl":null,"url":null,"abstract":"Recently, steady-state visual evoked potential (SSVEP) has become one of the most popular electroencephalography paradigms due to its high information transfer rate. Several approaches have been proposed to improve the performance of SSVEP. The calibration-free scenario is significant in SSVEP-based brain–computer interface systems, where the subject is the first time to use the system. The participating teams proposed several effective calibration-free algorithm frameworks in the SSVEP competition (calibration-free) of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper introduces the approaches used in the algorithms of the top five teams in the final. The results of the five subjects in the final proved the effectiveness of the approaches. This paper discusses the effectiveness of each approach in improving the system performance in the calibration-free scenario and gives suggestions on how to use these approaches in a real-world system.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overview of the winning approaches in BCI Controlled Robot Contest in World Robot Contest 2021: Calibration-free SSVEP\",\"authors\":\"Rui Bian, Dongrui Wu\",\"doi\":\"10.26599/BSA.2022.9050002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, steady-state visual evoked potential (SSVEP) has become one of the most popular electroencephalography paradigms due to its high information transfer rate. Several approaches have been proposed to improve the performance of SSVEP. The calibration-free scenario is significant in SSVEP-based brain–computer interface systems, where the subject is the first time to use the system. The participating teams proposed several effective calibration-free algorithm frameworks in the SSVEP competition (calibration-free) of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper introduces the approaches used in the algorithms of the top five teams in the final. The results of the five subjects in the final proved the effectiveness of the approaches. This paper discusses the effectiveness of each approach in improving the system performance in the calibration-free scenario and gives suggestions on how to use these approaches in a real-world system.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2022.9050002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2022.9050002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

稳态视觉诱发电位(SSVEP)以其高的信息传递率成为近年来最受欢迎的脑电图范式之一。已经提出了几种方法来提高SSVEP的性能。在基于ssvep的脑机接口系统中,无校准场景非常重要,因为受试者是第一次使用该系统。在2021年世界机器人大赛BCI控制机器人大赛的SSVEP竞赛(无标定)中,参赛团队提出了几种有效的无标定算法框架。本文介绍了决赛前五名队伍在算法中使用的方法。最后五个科目的成绩证明了方法的有效性。本文讨论了每种方法在无校准情况下提高系统性能的有效性,并给出了如何在实际系统中使用这些方法的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of the winning approaches in BCI Controlled Robot Contest in World Robot Contest 2021: Calibration-free SSVEP
Recently, steady-state visual evoked potential (SSVEP) has become one of the most popular electroencephalography paradigms due to its high information transfer rate. Several approaches have been proposed to improve the performance of SSVEP. The calibration-free scenario is significant in SSVEP-based brain–computer interface systems, where the subject is the first time to use the system. The participating teams proposed several effective calibration-free algorithm frameworks in the SSVEP competition (calibration-free) of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper introduces the approaches used in the algorithms of the top five teams in the final. The results of the five subjects in the final proved the effectiveness of the approaches. This paper discusses the effectiveness of each approach in improving the system performance in the calibration-free scenario and gives suggestions on how to use these approaches in a real-world system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1