针刺参数对聚吡咯涂层无纺布产热复合材料制备的影响

IF 0.7 Q3 MATERIALS SCIENCE, TEXTILES TEKSTILEC Pub Date : 2021-03-27 DOI:10.14502/TEKSTILEC2021.64.172-183
S. Maity, Shivangi Pandey, A. Kumar
{"title":"针刺参数对聚吡咯涂层无纺布产热复合材料制备的影响","authors":"S. Maity, Shivangi Pandey, A. Kumar","doi":"10.14502/TEKSTILEC2021.64.172-183","DOIUrl":null,"url":null,"abstract":"This work deals with the preparation and characterization of electrically conductive needle-punched non-wo¬ven composites for heat generation. Electro-conductive non-woven composites were prepared through the in situ chemical polymerization of pyrrole with FeCl3 (oxidant) and p-toluene sulfonic acid (dopant). A two-stage double-bath process was adopted for the in situ chemical polymerization of pyrrole. The effect of parameters such as fibre fineness, needle-punching density and depth of needle punching on a polypyrrole add-on, and surface resistivity were studied by employing the Box-Behnken response surface design. It was observed that fibre fineness was the most influential parameter of the polypyrrole add-on. The lowest surface resistivity of the polypyrrole coated sample (200 g/m2, prepared with a punch density of 200 punch/cm2, a punching depth of 6 mm and fibre fineness of 2.78 dtex) was found to be 9.32 kΩ/ with a polypyrrole add-on of 47.93%. This non-woven composite demonstrated good electrical conductivity and exhibited Joule’s effect of heat gener¬ation. Due to the application of a 30 V DC power supply, the surface temperature of the non-woven composite rose to 55 °C from a room temperature of 37 °C. Optical and electron microscopy images of the non-woven composites showed that PPy molecules formed a uniform coating on the non-woven surface. FTIR studies evi¬denced the coating of PPy on a polyester surface. These coated non-woven composites were highly electrically conductive and practically useful for the fabrication of heating pads for therapeutic use.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Needle-punching Parameters for the Preparation of Polypyrrole-coated Non-woven Composites for Heat Generation\",\"authors\":\"S. Maity, Shivangi Pandey, A. Kumar\",\"doi\":\"10.14502/TEKSTILEC2021.64.172-183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the preparation and characterization of electrically conductive needle-punched non-wo¬ven composites for heat generation. Electro-conductive non-woven composites were prepared through the in situ chemical polymerization of pyrrole with FeCl3 (oxidant) and p-toluene sulfonic acid (dopant). A two-stage double-bath process was adopted for the in situ chemical polymerization of pyrrole. The effect of parameters such as fibre fineness, needle-punching density and depth of needle punching on a polypyrrole add-on, and surface resistivity were studied by employing the Box-Behnken response surface design. It was observed that fibre fineness was the most influential parameter of the polypyrrole add-on. The lowest surface resistivity of the polypyrrole coated sample (200 g/m2, prepared with a punch density of 200 punch/cm2, a punching depth of 6 mm and fibre fineness of 2.78 dtex) was found to be 9.32 kΩ/ with a polypyrrole add-on of 47.93%. This non-woven composite demonstrated good electrical conductivity and exhibited Joule’s effect of heat gener¬ation. Due to the application of a 30 V DC power supply, the surface temperature of the non-woven composite rose to 55 °C from a room temperature of 37 °C. Optical and electron microscopy images of the non-woven composites showed that PPy molecules formed a uniform coating on the non-woven surface. FTIR studies evi¬denced the coating of PPy on a polyester surface. These coated non-woven composites were highly electrically conductive and practically useful for the fabrication of heating pads for therapeutic use.\",\"PeriodicalId\":22555,\"journal\":{\"name\":\"TEKSTILEC\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEKSTILEC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14502/TEKSTILEC2021.64.172-183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKSTILEC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14502/TEKSTILEC2021.64.172-183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 1

摘要

这项工作涉及用于发热的导电针刺非均匀复合材料的制备和表征。采用氧化剂FeCl3和掺杂剂对甲苯磺酸原位化学聚合吡咯制备了导电非织造复合材料。采用两段双浴法对吡咯进行了原位化学聚合。采用Box-Behnken响应面设计,研究了纤维细度、针刺密度和针刺深度等参数对聚吡咯添加剂和表面电阻率的影响。结果表明,纤维细度是聚吡咯添加量影响最大的参数。发现聚吡咯涂层样品(200 g/m2,以200冲压/cm2的冲压密度、6 mm的冲压深度和2.78 dtex的纤维细度制备)的最低表面电阻率为9.32kΩ/ 聚吡咯的添加量为47.93%。这种非织造复合材料表现出良好的导电性,并表现出焦耳热效应。由于使用了30V直流电源,非织造复合材料的表面温度从37°C的室温上升到55°C。非织造复合材料的光学和电子显微镜图像显示,PPy分子在非织造表面形成了均匀的涂层。FTIR研究证明PPy涂层在聚酯表面。这些涂覆的非织造复合材料具有高度导电性,并且实际上可用于制造用于治疗用途的加热垫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Needle-punching Parameters for the Preparation of Polypyrrole-coated Non-woven Composites for Heat Generation
This work deals with the preparation and characterization of electrically conductive needle-punched non-wo¬ven composites for heat generation. Electro-conductive non-woven composites were prepared through the in situ chemical polymerization of pyrrole with FeCl3 (oxidant) and p-toluene sulfonic acid (dopant). A two-stage double-bath process was adopted for the in situ chemical polymerization of pyrrole. The effect of parameters such as fibre fineness, needle-punching density and depth of needle punching on a polypyrrole add-on, and surface resistivity were studied by employing the Box-Behnken response surface design. It was observed that fibre fineness was the most influential parameter of the polypyrrole add-on. The lowest surface resistivity of the polypyrrole coated sample (200 g/m2, prepared with a punch density of 200 punch/cm2, a punching depth of 6 mm and fibre fineness of 2.78 dtex) was found to be 9.32 kΩ/ with a polypyrrole add-on of 47.93%. This non-woven composite demonstrated good electrical conductivity and exhibited Joule’s effect of heat gener¬ation. Due to the application of a 30 V DC power supply, the surface temperature of the non-woven composite rose to 55 °C from a room temperature of 37 °C. Optical and electron microscopy images of the non-woven composites showed that PPy molecules formed a uniform coating on the non-woven surface. FTIR studies evi¬denced the coating of PPy on a polyester surface. These coated non-woven composites were highly electrically conductive and practically useful for the fabrication of heating pads for therapeutic use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEKSTILEC
TEKSTILEC MATERIALS SCIENCE, TEXTILES-
CiteScore
1.30
自引率
14.30%
发文量
22
审稿时长
12 weeks
期刊最新文献
Study on the Comfort Properties of Knitted Fabrics Produced from Conventional and Sustainable Cotton and Polyester Fibres Green in-situ synthesis of TiO2 in combination with Curcuma longa for the tailoring of multifunctional cotton fabric Effect of Blending Cotton/Bamboo on UV Protection and Functional Purposes of Trilobal Polyester Microfibers Knitted Fabrics Using Different Structures Computer Modelling of Yarn Winding on Conical Bobbins Carpet Back Sizing Quality Assessment by Measuring the Amount of Resin Using Image Processing and Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1