{"title":"俄罗斯南部天气条件对杏生殖芽抗冻性的影响","authors":"V. Korzin, V. Gorina, Nikita Saplev","doi":"10.17221/73/2020-hortsci","DOIUrl":null,"url":null,"abstract":"One of the reasons limiting the apricot expansion in the world is the short period of winter dormancy in the plants and the rapid development of generative buds in the spring. Apricot flower buds often die even after small spring return frosts that limit the commercial culture of this fruit crop. The aim of this investigation was to study collection-breeding plantations and select frost-resistant genotypes that have promise for commercial and breeding use. To solve this problem, the frost resistance of generative buds in 50 apricot cultivars and the breeding forms of various origins were studied by freezing treatments of the branches in a climatic chamber. The Czech cultivar ‘Leala’ was selected due to its best frost resistance. In late winter 2020–2021, six cultivars and breeding forms, which kept 41.8 to 65.9% of the generative buds alive, were identified. These genotypes are characterised by a slow development that prevents any negative freezing temperature effects. Thus, the results of the study confirmed the dependence of the adaptation mechanisms in apricot plants on the rates of their morphogenesis and abiotic factor pressures.","PeriodicalId":13110,"journal":{"name":"Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of weather conditions in southern Russia on the frost resistance of apricot generative buds\",\"authors\":\"V. Korzin, V. Gorina, Nikita Saplev\",\"doi\":\"10.17221/73/2020-hortsci\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the reasons limiting the apricot expansion in the world is the short period of winter dormancy in the plants and the rapid development of generative buds in the spring. Apricot flower buds often die even after small spring return frosts that limit the commercial culture of this fruit crop. The aim of this investigation was to study collection-breeding plantations and select frost-resistant genotypes that have promise for commercial and breeding use. To solve this problem, the frost resistance of generative buds in 50 apricot cultivars and the breeding forms of various origins were studied by freezing treatments of the branches in a climatic chamber. The Czech cultivar ‘Leala’ was selected due to its best frost resistance. In late winter 2020–2021, six cultivars and breeding forms, which kept 41.8 to 65.9% of the generative buds alive, were identified. These genotypes are characterised by a slow development that prevents any negative freezing temperature effects. Thus, the results of the study confirmed the dependence of the adaptation mechanisms in apricot plants on the rates of their morphogenesis and abiotic factor pressures.\",\"PeriodicalId\":13110,\"journal\":{\"name\":\"Horticultural Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/73/2020-hortsci\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/73/2020-hortsci","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
The effect of weather conditions in southern Russia on the frost resistance of apricot generative buds
One of the reasons limiting the apricot expansion in the world is the short period of winter dormancy in the plants and the rapid development of generative buds in the spring. Apricot flower buds often die even after small spring return frosts that limit the commercial culture of this fruit crop. The aim of this investigation was to study collection-breeding plantations and select frost-resistant genotypes that have promise for commercial and breeding use. To solve this problem, the frost resistance of generative buds in 50 apricot cultivars and the breeding forms of various origins were studied by freezing treatments of the branches in a climatic chamber. The Czech cultivar ‘Leala’ was selected due to its best frost resistance. In late winter 2020–2021, six cultivars and breeding forms, which kept 41.8 to 65.9% of the generative buds alive, were identified. These genotypes are characterised by a slow development that prevents any negative freezing temperature effects. Thus, the results of the study confirmed the dependence of the adaptation mechanisms in apricot plants on the rates of their morphogenesis and abiotic factor pressures.
期刊介绍:
The journal publishes results of basic and applied research from all areas of horticulture, fruit-growing, vegetable-growing, wine-making and viticulture, floriculture, ornamental gardening, garden and landscape architecture, concerning plants that are grown under the conditions of European temperate zone, or field plants that are considered as horticultural cultures. Original scientific papers, short communications and review articles are published in the journal. Papers are published in English (British spelling).