{"title":"不同粒径碳纤维对二硫化钼填充PTFE复合材料物理性能的影响","authors":"Ke-wei Zhang, X. Ji, Y. Mi, Lei Gao, Tianyu Wang","doi":"10.1080/09500839.2021.1917780","DOIUrl":null,"url":null,"abstract":"ABSTRACT A series of polytetrafluoroethylene (PTFE) composites filled with CF (carbon fiber) and MoS2 (molybdenum disulfide) were prepared by cold-pressing sintering. The tensile strength and elongation at the breakpoint of the samples were measured with a bench-top tensile machine, friction and wear performance were tested with an abrasion machine, and the morphology and microscopic structure were analysed by SEM. The results show that the tensile strength, the elongation at breakage, and the wear resistance were all improved after filling compared to the pure PTFE. The CF/MoS2/PTFE composites filled with CF (particle size 7.498 μm) had the optimal tensile strength and elongation at the breakpoint. Correspondingly, the wear rate was the smallest when the particle size was 23.733 μm.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"277 - 286"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1917780","citationCount":"5","resultStr":"{\"title\":\"Effects of carbon fibers with different particle sizes on the physical properties of MoS2-filled PTFE composites\",\"authors\":\"Ke-wei Zhang, X. Ji, Y. Mi, Lei Gao, Tianyu Wang\",\"doi\":\"10.1080/09500839.2021.1917780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A series of polytetrafluoroethylene (PTFE) composites filled with CF (carbon fiber) and MoS2 (molybdenum disulfide) were prepared by cold-pressing sintering. The tensile strength and elongation at the breakpoint of the samples were measured with a bench-top tensile machine, friction and wear performance were tested with an abrasion machine, and the morphology and microscopic structure were analysed by SEM. The results show that the tensile strength, the elongation at breakage, and the wear resistance were all improved after filling compared to the pure PTFE. The CF/MoS2/PTFE composites filled with CF (particle size 7.498 μm) had the optimal tensile strength and elongation at the breakpoint. Correspondingly, the wear rate was the smallest when the particle size was 23.733 μm.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"101 1\",\"pages\":\"277 - 286\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09500839.2021.1917780\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2021.1917780\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1917780","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of carbon fibers with different particle sizes on the physical properties of MoS2-filled PTFE composites
ABSTRACT A series of polytetrafluoroethylene (PTFE) composites filled with CF (carbon fiber) and MoS2 (molybdenum disulfide) were prepared by cold-pressing sintering. The tensile strength and elongation at the breakpoint of the samples were measured with a bench-top tensile machine, friction and wear performance were tested with an abrasion machine, and the morphology and microscopic structure were analysed by SEM. The results show that the tensile strength, the elongation at breakage, and the wear resistance were all improved after filling compared to the pure PTFE. The CF/MoS2/PTFE composites filled with CF (particle size 7.498 μm) had the optimal tensile strength and elongation at the breakpoint. Correspondingly, the wear rate was the smallest when the particle size was 23.733 μm.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.