Moudy Soraya, Justus T O Sievers, Dionisius Denis, A. Bowolaksono, R. T. Sasmono
{"title":"α-山竹苷有效抑制基孔肯雅病毒在HepG2细胞中的复制","authors":"Moudy Soraya, Justus T O Sievers, Dionisius Denis, A. Bowolaksono, R. T. Sasmono","doi":"10.4308/hjb.30.6.1187-1193","DOIUrl":null,"url":null,"abstract":"Chikungunya virus (CHIKV) is an arthropod-transmitted Alphavirus endemic to countries in Africa and Asia, including Indonesia, which causes debilitating arthralgia which can last several years. The rapid spread of CHIKV to new areas makes the discovery of antiviral agents a high priority. α-mangostin is a xanthone from mangosteen (Garcinia mangostana) pericarp and has antiviral activity against Hepatitis C and Dengue viruses. We investigated the antiviral activity of α-mangostin against CHIKV in HepG2 cells in pre-, post- and combination treatments compared to the common antiviral medicine ribavirin, as well their cytotoxicity. Our results show dose-responsive reductions in viral titer in all treatment regimes, with post- and combination treatments being more effective than pre-treatment only (IC50 = 7.79, 5.99 and 6.39 µM, respectively), but with poor specificity (SI = 1.39, 1.81 and 1.70, respectively) compared to ribavirin. Neither compound showed a direct virucidal effect. These results suggest α-mangostin effectively inhibits CHIKV replication in this cell line.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-Mangostin Effectively Inhibits Chikungunya Virus Replication in HepG2 Cells\",\"authors\":\"Moudy Soraya, Justus T O Sievers, Dionisius Denis, A. Bowolaksono, R. T. Sasmono\",\"doi\":\"10.4308/hjb.30.6.1187-1193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chikungunya virus (CHIKV) is an arthropod-transmitted Alphavirus endemic to countries in Africa and Asia, including Indonesia, which causes debilitating arthralgia which can last several years. The rapid spread of CHIKV to new areas makes the discovery of antiviral agents a high priority. α-mangostin is a xanthone from mangosteen (Garcinia mangostana) pericarp and has antiviral activity against Hepatitis C and Dengue viruses. We investigated the antiviral activity of α-mangostin against CHIKV in HepG2 cells in pre-, post- and combination treatments compared to the common antiviral medicine ribavirin, as well their cytotoxicity. Our results show dose-responsive reductions in viral titer in all treatment regimes, with post- and combination treatments being more effective than pre-treatment only (IC50 = 7.79, 5.99 and 6.39 µM, respectively), but with poor specificity (SI = 1.39, 1.81 and 1.70, respectively) compared to ribavirin. Neither compound showed a direct virucidal effect. These results suggest α-mangostin effectively inhibits CHIKV replication in this cell line.\",\"PeriodicalId\":12927,\"journal\":{\"name\":\"HAYATI Journal of Biosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HAYATI Journal of Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4308/hjb.30.6.1187-1193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.30.6.1187-1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
α-Mangostin Effectively Inhibits Chikungunya Virus Replication in HepG2 Cells
Chikungunya virus (CHIKV) is an arthropod-transmitted Alphavirus endemic to countries in Africa and Asia, including Indonesia, which causes debilitating arthralgia which can last several years. The rapid spread of CHIKV to new areas makes the discovery of antiviral agents a high priority. α-mangostin is a xanthone from mangosteen (Garcinia mangostana) pericarp and has antiviral activity against Hepatitis C and Dengue viruses. We investigated the antiviral activity of α-mangostin against CHIKV in HepG2 cells in pre-, post- and combination treatments compared to the common antiviral medicine ribavirin, as well their cytotoxicity. Our results show dose-responsive reductions in viral titer in all treatment regimes, with post- and combination treatments being more effective than pre-treatment only (IC50 = 7.79, 5.99 and 6.39 µM, respectively), but with poor specificity (SI = 1.39, 1.81 and 1.70, respectively) compared to ribavirin. Neither compound showed a direct virucidal effect. These results suggest α-mangostin effectively inhibits CHIKV replication in this cell line.
期刊介绍:
HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.