增加工程数据访问的宣言

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2020-06-18 DOI:10.1017/dce.2020.3
L. Dodds, Pauline L'Henaff, James Maddison, D. Yates
{"title":"增加工程数据访问的宣言","authors":"L. Dodds, Pauline L'Henaff, James Maddison, D. Yates","doi":"10.1017/dce.2020.3","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a set of principles that articulate a shared vision for increasing access to data in the engineering and related sectors. The principles are intended to help guide progress toward a data ecosystem that provides sustainable access to data, in ways that will help a variety of stakeholders in maximizing its value while mitigating potential harms. In addition to being a manifesto for change, the principles can also be viewed as a means for understanding the alignment, overlaps and gaps between a range of existing research programs, policy initiatives, and related work on data governance and sharing. After providing background on the growing data economy and relevant recent policy initiatives in the United Kingdom and European Union, we then introduce the nine key principles of the manifesto. For each principle, we provide some additional rationale and links to related work. We invite feedback on the manifesto and endorsements from a range of stakeholders.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/dce.2020.3","citationCount":"2","resultStr":"{\"title\":\"A manifesto for increasing access to data in engineering\",\"authors\":\"L. Dodds, Pauline L'Henaff, James Maddison, D. Yates\",\"doi\":\"10.1017/dce.2020.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a set of principles that articulate a shared vision for increasing access to data in the engineering and related sectors. The principles are intended to help guide progress toward a data ecosystem that provides sustainable access to data, in ways that will help a variety of stakeholders in maximizing its value while mitigating potential harms. In addition to being a manifesto for change, the principles can also be viewed as a means for understanding the alignment, overlaps and gaps between a range of existing research programs, policy initiatives, and related work on data governance and sharing. After providing background on the growing data economy and relevant recent policy initiatives in the United Kingdom and European Union, we then introduce the nine key principles of the manifesto. For each principle, we provide some additional rationale and links to related work. We invite feedback on the manifesto and endorsements from a range of stakeholders.\",\"PeriodicalId\":34169,\"journal\":{\"name\":\"DataCentric Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/dce.2020.3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DataCentric Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dce.2020.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2020.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文介绍了一套原则,阐明了在工程和相关部门增加数据访问的共同愿景。这些原则旨在帮助指导建立一个提供可持续数据访问的数据生态系统,以帮助各种利益相关者最大限度地实现其价值,同时减轻潜在危害。除了作为变革宣言外,这些原则还可以被视为理解一系列现有研究计划、政策举措以及数据治理和共享相关工作之间的一致性、重叠和差距的一种手段。在提供了英国和欧盟不断增长的数据经济和最近相关政策举措的背景后,我们介绍了宣言的九项关键原则。对于每一项原则,我们都提供了一些额外的基本原理和相关工作的链接。我们邀请一系列利益相关者对宣言进行反馈和支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A manifesto for increasing access to data in engineering
Abstract This paper introduces a set of principles that articulate a shared vision for increasing access to data in the engineering and related sectors. The principles are intended to help guide progress toward a data ecosystem that provides sustainable access to data, in ways that will help a variety of stakeholders in maximizing its value while mitigating potential harms. In addition to being a manifesto for change, the principles can also be viewed as a means for understanding the alignment, overlaps and gaps between a range of existing research programs, policy initiatives, and related work on data governance and sharing. After providing background on the growing data economy and relevant recent policy initiatives in the United Kingdom and European Union, we then introduce the nine key principles of the manifesto. For each principle, we provide some additional rationale and links to related work. We invite feedback on the manifesto and endorsements from a range of stakeholders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1