聚乙烯软锰酸酯包被硼氢化钠稳定粒子胶体银新鲜无过滤和纳米过滤磁搅拌冷却溶液的表征

J. Pani, Royana Singh, S. Singh
{"title":"聚乙烯软锰酸酯包被硼氢化钠稳定粒子胶体银新鲜无过滤和纳米过滤磁搅拌冷却溶液的表征","authors":"J. Pani, Royana Singh, S. Singh","doi":"10.4236/WJNSE.2018.81001","DOIUrl":null,"url":null,"abstract":"Characterization is absolutely necessary and is a must in order to understand and estimate different silver nanoparticle (nm) size in specific group wise manner which corresponds to group wise in number & sizes, and their importance and effect on biological tissue and organs with agglomeration for nano toxicological studies in environments, the acute toxicity of colloidal silver nano particles (AgNps) were studied in fresh dissected tissues of Swiss Albino mice and their fetuses. In this manuscript, an attempt is made to demonstrate the synthesis and characterization of silver nano particles with a wide range of sizes (from 2.75 nm up to 1908.2 nm in radius) by reducing silver nitrate powder with polyvinyl pyrollidone in aqueous solutions in the presence of a sodium borohydride stabilizer. The resulting particles were found spherical aggregates with a rough surface and poly dispersity index below 18.26% (>0.783 PDI). The particle optical, cumulative, diluents and electrical conductivity properties were examined by dynamic light scattering and zeta potential but morphology was evaluated after examination by transmission electron microscopy & image-j. Silver nanoparticles were directly coated with polyvinyl pyrollidone with a sodium borohydride stabilizer. Optical properties on a single-particle level were studied by means of auto correlation function measurements. The effective poly dispersity index of the charged silver nanoparticles was low enough to form a colloidal crystal at low ionic strength. Colloidal form is found more toxic than suspended particles in 1.5 molar sodium chloride solution; this shows increase of silver nanoparticles size due to agglomeration, will reduce the toxicity but increase teratogenicity.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":"8 1","pages":"1-31"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of Polyvinyl Pyrollidone Coated Sodium Borohydride Stabilized Particle Colloidal Silver Fresh None Filtered and Nano Filtered Solution Made up of Magnetic Stirring and Cooling Method\",\"authors\":\"J. Pani, Royana Singh, S. Singh\",\"doi\":\"10.4236/WJNSE.2018.81001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterization is absolutely necessary and is a must in order to understand and estimate different silver nanoparticle (nm) size in specific group wise manner which corresponds to group wise in number & sizes, and their importance and effect on biological tissue and organs with agglomeration for nano toxicological studies in environments, the acute toxicity of colloidal silver nano particles (AgNps) were studied in fresh dissected tissues of Swiss Albino mice and their fetuses. In this manuscript, an attempt is made to demonstrate the synthesis and characterization of silver nano particles with a wide range of sizes (from 2.75 nm up to 1908.2 nm in radius) by reducing silver nitrate powder with polyvinyl pyrollidone in aqueous solutions in the presence of a sodium borohydride stabilizer. The resulting particles were found spherical aggregates with a rough surface and poly dispersity index below 18.26% (>0.783 PDI). The particle optical, cumulative, diluents and electrical conductivity properties were examined by dynamic light scattering and zeta potential but morphology was evaluated after examination by transmission electron microscopy & image-j. Silver nanoparticles were directly coated with polyvinyl pyrollidone with a sodium borohydride stabilizer. Optical properties on a single-particle level were studied by means of auto correlation function measurements. The effective poly dispersity index of the charged silver nanoparticles was low enough to form a colloidal crystal at low ionic strength. Colloidal form is found more toxic than suspended particles in 1.5 molar sodium chloride solution; this shows increase of silver nanoparticles size due to agglomeration, will reduce the toxicity but increase teratogenicity.\",\"PeriodicalId\":66816,\"journal\":{\"name\":\"纳米科学与工程(英文)\",\"volume\":\"8 1\",\"pages\":\"1-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米科学与工程(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/WJNSE.2018.81001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2018.81001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

表征是绝对必要的,也是必须的,以便了解和估计不同的银纳米颗粒(nm)尺寸,以特定的分组方式,在数量和尺寸上与分组相对应,以及它们在环境中纳米毒理学研究中的重要性和对生物组织和器官的影响,研究了胶体银纳米粒子(AgNps)在瑞士白化小鼠及其胎儿新鲜解剖组织中的急性毒性。在这篇手稿中,试图证明在硼氢化钠稳定剂的存在下,通过在水溶液中用聚乙烯吡咯烷酮还原硝酸银粉末,合成和表征具有宽尺寸范围(半径从2.75nm到1908.2nm)的银纳米粒子。所得颗粒为球形聚集体,表面粗糙,多分散指数低于18.26%(>0.783PDI)。通过动态光散射和ζ电位检测颗粒的光学、累积、稀释剂和导电性能,但通过透射电子显微镜和图像喷墨检测后评估其形态。用硼氢化钠稳定剂将聚乙烯吡咯烷酮直接涂覆在银纳米颗粒上。通过自相关函数测量研究了单粒子水平上的光学性质。带电银纳米颗粒的有效多分散指数低到足以在低离子强度下形成胶体晶体。发现胶体形式比1.5摩尔氯化钠溶液中的悬浮颗粒毒性更大;这表明银纳米粒子由于团聚而增大尺寸,会降低毒性但增加致畸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Polyvinyl Pyrollidone Coated Sodium Borohydride Stabilized Particle Colloidal Silver Fresh None Filtered and Nano Filtered Solution Made up of Magnetic Stirring and Cooling Method
Characterization is absolutely necessary and is a must in order to understand and estimate different silver nanoparticle (nm) size in specific group wise manner which corresponds to group wise in number & sizes, and their importance and effect on biological tissue and organs with agglomeration for nano toxicological studies in environments, the acute toxicity of colloidal silver nano particles (AgNps) were studied in fresh dissected tissues of Swiss Albino mice and their fetuses. In this manuscript, an attempt is made to demonstrate the synthesis and characterization of silver nano particles with a wide range of sizes (from 2.75 nm up to 1908.2 nm in radius) by reducing silver nitrate powder with polyvinyl pyrollidone in aqueous solutions in the presence of a sodium borohydride stabilizer. The resulting particles were found spherical aggregates with a rough surface and poly dispersity index below 18.26% (>0.783 PDI). The particle optical, cumulative, diluents and electrical conductivity properties were examined by dynamic light scattering and zeta potential but morphology was evaluated after examination by transmission electron microscopy & image-j. Silver nanoparticles were directly coated with polyvinyl pyrollidone with a sodium borohydride stabilizer. Optical properties on a single-particle level were studied by means of auto correlation function measurements. The effective poly dispersity index of the charged silver nanoparticles was low enough to form a colloidal crystal at low ionic strength. Colloidal form is found more toxic than suspended particles in 1.5 molar sodium chloride solution; this shows increase of silver nanoparticles size due to agglomeration, will reduce the toxicity but increase teratogenicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
103
期刊最新文献
Preparation of Antimicrobial Iron Oxide Nanostructures from Galvanizning Effluent Application of Corona Charge Deposition Technique in Thin Film Industry Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts Er3+ and Er3+/Yb3+ Ions Embedded in Nano-Structure BaTi0.9Sn0.1O3: Structure, Morphology and Dielectric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1