{"title":"基于分类的监督机器学习的因子投资","authors":"Edward N. W. Aw, Joshua Jiang, John Q. Jiang","doi":"10.3905/joi.2022.1.220","DOIUrl":null,"url":null,"abstract":"There are two types of supervised machine learning (SML): regression and classification. In this study, the authors propose classification-based machine learning algorithms for factor investing with artificial neural networks in which the cross section of stock returns is grouped into five categories: strong buy, buy, neutral, sell, and strong sell. Their empirical out-of-sample results demonstrate some advantages of classification-based machine learning relative to regression-based learning in which the actual stock returns denote the response variable. The classification-based models also deliver slight outperformance relative to the ordinary least squares model, although the outperformance is not statistically significant. Furthermore, the out-of-sample results show that “deep” learning with multilayers of neuron layers cannot outperform a less sophisticated “shallow” learning for both classification-based and regression-based SML algorithms. Their findings suggest that market noise, common in the financial markets, during the training process overwhelms the nonlinear association uncovered in the machine learning process; and the classification of the cross section of stock returns may have reduced some of the noise.","PeriodicalId":45504,"journal":{"name":"Journal of Investing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factor Investing with Classification-Based Supervised Machine Learning\",\"authors\":\"Edward N. W. Aw, Joshua Jiang, John Q. Jiang\",\"doi\":\"10.3905/joi.2022.1.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two types of supervised machine learning (SML): regression and classification. In this study, the authors propose classification-based machine learning algorithms for factor investing with artificial neural networks in which the cross section of stock returns is grouped into five categories: strong buy, buy, neutral, sell, and strong sell. Their empirical out-of-sample results demonstrate some advantages of classification-based machine learning relative to regression-based learning in which the actual stock returns denote the response variable. The classification-based models also deliver slight outperformance relative to the ordinary least squares model, although the outperformance is not statistically significant. Furthermore, the out-of-sample results show that “deep” learning with multilayers of neuron layers cannot outperform a less sophisticated “shallow” learning for both classification-based and regression-based SML algorithms. Their findings suggest that market noise, common in the financial markets, during the training process overwhelms the nonlinear association uncovered in the machine learning process; and the classification of the cross section of stock returns may have reduced some of the noise.\",\"PeriodicalId\":45504,\"journal\":{\"name\":\"Journal of Investing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Investing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/joi.2022.1.220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/joi.2022.1.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Factor Investing with Classification-Based Supervised Machine Learning
There are two types of supervised machine learning (SML): regression and classification. In this study, the authors propose classification-based machine learning algorithms for factor investing with artificial neural networks in which the cross section of stock returns is grouped into five categories: strong buy, buy, neutral, sell, and strong sell. Their empirical out-of-sample results demonstrate some advantages of classification-based machine learning relative to regression-based learning in which the actual stock returns denote the response variable. The classification-based models also deliver slight outperformance relative to the ordinary least squares model, although the outperformance is not statistically significant. Furthermore, the out-of-sample results show that “deep” learning with multilayers of neuron layers cannot outperform a less sophisticated “shallow” learning for both classification-based and regression-based SML algorithms. Their findings suggest that market noise, common in the financial markets, during the training process overwhelms the nonlinear association uncovered in the machine learning process; and the classification of the cross section of stock returns may have reduced some of the noise.