一维复信号的局部自适应Myriad滤波

Q4 Agricultural and Biological Sciences International Journal Bioautomation Pub Date : 2018-09-01 DOI:10.7546/IJBA.2018.22.3.275-296
N. Tulyakova, T. Neycheva, O. Trofymchuk, O. Stryzhak
{"title":"一维复信号的局部自适应Myriad滤波","authors":"N. Tulyakova, T. Neycheva, O. Trofymchuk, O. Stryzhak","doi":"10.7546/IJBA.2018.22.3.275-296","DOIUrl":null,"url":null,"abstract":"Locally-adaptive algorithms of myriad filtering are proposed with adaptation of a sample myriad linearity parameter K, depending upon local estimates of a signal, and with “hard” switching of sliding window length settings and a coefficient which influences on the parameter K. Statistical estimates of the filters quality are obtained using a criterion of a minimum mean-square error for a model of one-dimensional complex signal that includes different elementary segments under conditions of additive Gaussian noise with zero mean and different variances and possible spikes presence. Improvement of integral and local performance indicators is shown in comparison to the highly effective non-linear locally-adaptive algorithms for the considered test signal. Having a complex signal of high efficiency, one of the proposed algorithms provides nearly optimal noise suppression at the segments of linear change of a signal; other algorithm provides higher quality of step edge preservation and the best noise suppression on a const signal. Better efficiency in cases of low and high noise levels is achieved by preliminary noise level estimation through comparison of locally-adaptive parameter and thresholds. It is shown that, in order to ensure better spikes removal, it is expedient to pre-process the signal by robust myriad filter with small window length. The considered adaptive nonlinear filters have possibility to be implemented in a real time mode.","PeriodicalId":38867,"journal":{"name":"International Journal Bioautomation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Locally-adaptive Myriad Filtration of One-dimensional Complex Signal\",\"authors\":\"N. Tulyakova, T. Neycheva, O. Trofymchuk, O. Stryzhak\",\"doi\":\"10.7546/IJBA.2018.22.3.275-296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locally-adaptive algorithms of myriad filtering are proposed with adaptation of a sample myriad linearity parameter K, depending upon local estimates of a signal, and with “hard” switching of sliding window length settings and a coefficient which influences on the parameter K. Statistical estimates of the filters quality are obtained using a criterion of a minimum mean-square error for a model of one-dimensional complex signal that includes different elementary segments under conditions of additive Gaussian noise with zero mean and different variances and possible spikes presence. Improvement of integral and local performance indicators is shown in comparison to the highly effective non-linear locally-adaptive algorithms for the considered test signal. Having a complex signal of high efficiency, one of the proposed algorithms provides nearly optimal noise suppression at the segments of linear change of a signal; other algorithm provides higher quality of step edge preservation and the best noise suppression on a const signal. Better efficiency in cases of low and high noise levels is achieved by preliminary noise level estimation through comparison of locally-adaptive parameter and thresholds. It is shown that, in order to ensure better spikes removal, it is expedient to pre-process the signal by robust myriad filter with small window length. The considered adaptive nonlinear filters have possibility to be implemented in a real time mode.\",\"PeriodicalId\":38867,\"journal\":{\"name\":\"International Journal Bioautomation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Bioautomation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/IJBA.2018.22.3.275-296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Bioautomation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/IJBA.2018.22.3.275-296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

根据信号的局部估计,通过对样本无数线性参数K的自适应,以及滑动窗口长度设置和影响参数K的系数的“硬”切换,提出了无数滤波的局部自适应算法。滤波器质量的统计估计是使用一维复信号模型的最小均方误差标准来获得的,该模型包括在具有零均值和不同方差以及可能存在尖峰的加性高斯噪声的条件下的不同基本段。与所考虑的测试信号的高效非线性局部自适应算法相比,显示了积分和局部性能指标的改进。具有高效率的复杂信号,所提出的算法之一在信号的线性变化段处提供几乎最优的噪声抑制;其他算法提供了更高质量的阶跃边缘保持和对const信号的最佳噪声抑制。在低噪声水平和高噪声水平的情况下,通过比较局部自适应参数和阈值的初步噪声水平估计实现了更好的效率。结果表明,为了保证更好地去除尖峰,采用小窗口长度的鲁棒无数滤波器对信号进行预处理是有利的。所考虑的自适应非线性滤波器有可能以实时模式实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locally-adaptive Myriad Filtration of One-dimensional Complex Signal
Locally-adaptive algorithms of myriad filtering are proposed with adaptation of a sample myriad linearity parameter K, depending upon local estimates of a signal, and with “hard” switching of sliding window length settings and a coefficient which influences on the parameter K. Statistical estimates of the filters quality are obtained using a criterion of a minimum mean-square error for a model of one-dimensional complex signal that includes different elementary segments under conditions of additive Gaussian noise with zero mean and different variances and possible spikes presence. Improvement of integral and local performance indicators is shown in comparison to the highly effective non-linear locally-adaptive algorithms for the considered test signal. Having a complex signal of high efficiency, one of the proposed algorithms provides nearly optimal noise suppression at the segments of linear change of a signal; other algorithm provides higher quality of step edge preservation and the best noise suppression on a const signal. Better efficiency in cases of low and high noise levels is achieved by preliminary noise level estimation through comparison of locally-adaptive parameter and thresholds. It is shown that, in order to ensure better spikes removal, it is expedient to pre-process the signal by robust myriad filter with small window length. The considered adaptive nonlinear filters have possibility to be implemented in a real time mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal Bioautomation
International Journal Bioautomation Agricultural and Biological Sciences-Food Science
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
12 weeks
期刊最新文献
Differential Effect of Novel Plant Cystatins on the Adhesive Behaviour of Normal and Cancer Breast Cells Genome Wide Identification, Characterization and Evolutionary Analysis of T6SS in Burkholderia cenocepacia Strains Dynamic Model Inference of Gene Regulatory Network based on Hybrid Parallel Genetic Algorithm and Threshold Qualification Method Effect of Graphene Oxide and Ammonia-modified Graphene Oxide Particles on ATPase Activity of Rat Liver Mitochondria The Ecological Role of Probiotics in in vitro Culture for the Improvement of Health in the Poultry Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1