应用新闻情感优化资产配置策略

IF 0.6 Q4 BUSINESS, FINANCE Journal of Investing Pub Date : 2021-09-29 DOI:10.3905/joi.2021.1.203
P. Rohner, Matthias W. Uhl
{"title":"应用新闻情感优化资产配置策略","authors":"P. Rohner, Matthias W. Uhl","doi":"10.3905/joi.2021.1.203","DOIUrl":null,"url":null,"abstract":"In this article, the authors show that it is possible to enhance traditional Black and Litterman strategic asset allocation (SAA) models with a behavioral approach based on news sentiment. In an out-of-sample backtest over 10 years, the news sentiment–based SAA outperforms the benchmark SAA by 0.5% a year with less risk and a 20% higher Sharpe ratio. The news sentiment data are also statistically different from price momentum measures.","PeriodicalId":45504,"journal":{"name":"Journal of Investing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying News Sentiment for Optimizing Strategic Asset Allocations\",\"authors\":\"P. Rohner, Matthias W. Uhl\",\"doi\":\"10.3905/joi.2021.1.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors show that it is possible to enhance traditional Black and Litterman strategic asset allocation (SAA) models with a behavioral approach based on news sentiment. In an out-of-sample backtest over 10 years, the news sentiment–based SAA outperforms the benchmark SAA by 0.5% a year with less risk and a 20% higher Sharpe ratio. The news sentiment data are also statistically different from price momentum measures.\",\"PeriodicalId\":45504,\"journal\":{\"name\":\"Journal of Investing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Investing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/joi.2021.1.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/joi.2021.1.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,作者表明,通过基于新闻情绪的行为方法,可以增强传统的Black和Litterman战略资产配置(SAA)模型。在10年的样本外回溯测试中,基于新闻情绪的SAA每年比基准SAA高0.5%,风险较小,夏普比率高出20%。新闻情绪数据在统计上也与价格动量指标不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying News Sentiment for Optimizing Strategic Asset Allocations
In this article, the authors show that it is possible to enhance traditional Black and Litterman strategic asset allocation (SAA) models with a behavioral approach based on news sentiment. In an out-of-sample backtest over 10 years, the news sentiment–based SAA outperforms the benchmark SAA by 0.5% a year with less risk and a 20% higher Sharpe ratio. The news sentiment data are also statistically different from price momentum measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Investing
Journal of Investing BUSINESS, FINANCE-
CiteScore
1.10
自引率
16.70%
发文量
42
期刊最新文献
A New Global Portfolio Weighting Strategy Based on Cointegration Methods “I Have Never Seen a Bad Backtest”: Modeling Reality in Quantitative Investing Predicting Market Risk Premiums with Historical Patterns How Many Securities Should an Active Manager hold? What Makes the Dollar Cost Averaging Strategy So Popular Today? A Critical Review of the Benefits and Risks of a Controversial Investment Scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1