{"title":"GeoDeepShovel:一个在人工智能帮助下从地学文献中建立科学数据库的平台","authors":"Shao Zhang, Hui Xu, Yuting Jia, Ying Wen, Dakuo Wang, Luoyi Fu, Xinbing Wang, Chenghu Zhou","doi":"10.1002/gdj3.186","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of big data science, the research paradigm in the field of geosciences has also begun to shift to big data-driven scientific discovery. Researchers need to read a huge amount of literature to locate, extract and aggregate relevant results and data that are published and stored in PDF format for building a scientific database to support the big data-driven discovery. In this paper, based on the findings of a study about how geoscientists annotate literature and extract and aggregate data, we proposed GeoDeepShovel, a publicly available AI-assisted data extraction system to support their needs. GeoDeepShovel leverages state-of-the-art neural network models to support researcher(s) easily and accurately annotate papers (in the PDF format) and extract data from tables, figures, maps, etc., in a human–AI collaboration manner. As a part of the Deep-Time Digital Earth (DDE) program, GeoDeepShovel has been deployed for 8 months, and there are already 400 users from 44 geoscience research teams within the DDE program using it to construct scientific databases on a daily basis, and more than 240 projects and 50,000 documents have been processed for building scientific databases.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.186","citationCount":"0","resultStr":"{\"title\":\"GeoDeepShovel: A platform for building scientific database from geoscience literature with AI assistance\",\"authors\":\"Shao Zhang, Hui Xu, Yuting Jia, Ying Wen, Dakuo Wang, Luoyi Fu, Xinbing Wang, Chenghu Zhou\",\"doi\":\"10.1002/gdj3.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid development of big data science, the research paradigm in the field of geosciences has also begun to shift to big data-driven scientific discovery. Researchers need to read a huge amount of literature to locate, extract and aggregate relevant results and data that are published and stored in PDF format for building a scientific database to support the big data-driven discovery. In this paper, based on the findings of a study about how geoscientists annotate literature and extract and aggregate data, we proposed GeoDeepShovel, a publicly available AI-assisted data extraction system to support their needs. GeoDeepShovel leverages state-of-the-art neural network models to support researcher(s) easily and accurately annotate papers (in the PDF format) and extract data from tables, figures, maps, etc., in a human–AI collaboration manner. As a part of the Deep-Time Digital Earth (DDE) program, GeoDeepShovel has been deployed for 8 months, and there are already 400 users from 44 geoscience research teams within the DDE program using it to construct scientific databases on a daily basis, and more than 240 projects and 50,000 documents have been processed for building scientific databases.</p>\",\"PeriodicalId\":54351,\"journal\":{\"name\":\"Geoscience Data Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.186\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Data Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.186\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.186","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
GeoDeepShovel: A platform for building scientific database from geoscience literature with AI assistance
With the rapid development of big data science, the research paradigm in the field of geosciences has also begun to shift to big data-driven scientific discovery. Researchers need to read a huge amount of literature to locate, extract and aggregate relevant results and data that are published and stored in PDF format for building a scientific database to support the big data-driven discovery. In this paper, based on the findings of a study about how geoscientists annotate literature and extract and aggregate data, we proposed GeoDeepShovel, a publicly available AI-assisted data extraction system to support their needs. GeoDeepShovel leverages state-of-the-art neural network models to support researcher(s) easily and accurately annotate papers (in the PDF format) and extract data from tables, figures, maps, etc., in a human–AI collaboration manner. As a part of the Deep-Time Digital Earth (DDE) program, GeoDeepShovel has been deployed for 8 months, and there are already 400 users from 44 geoscience research teams within the DDE program using it to construct scientific databases on a daily basis, and more than 240 projects and 50,000 documents have been processed for building scientific databases.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.