VODAN非洲架构中的数据访问、控制和隐私保护

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-08-18 DOI:10.1162/dint_a_00180
Putu Hadi Purnama Jati, M. Reisen, E. Flikkenschild, Fransisca Oladipo, Bert Meerman, Ruduan Plug, Sara Nodehi
{"title":"VODAN非洲架构中的数据访问、控制和隐私保护","authors":"Putu Hadi Purnama Jati, M. Reisen, E. Flikkenschild, Fransisca Oladipo, Bert Meerman, Ruduan Plug, Sara Nodehi","doi":"10.1162/dint_a_00180","DOIUrl":null,"url":null,"abstract":"Abstract The Virus Outbreak Data Network (VODAN)-Africa aims to contribute to the publication of Findable Accessible, Interoperable, and Reusable (FAIR) health data under well-defined access conditions. The next step in the VODAN-Africa architecture is to locally deploy the Center for Expanded Data Annotation and Retrieval (CEDAR) and arrange accessibility based on the ‘data visiting’ concept. Locally curated and reposited machine-actionable data can be visited by queries or algorithms, provided that the conditions of access are met. The goal is to enable the multiple (re)use of data with secure access functionality by clinicians (patient care), an idea aligned with the FAIR-based Personal Health Train (PHT) concept. The privacy and security requirements in relation to the FAIR Data Host and the FAIRification workspace (to produce metadata) or dashboard (for the patient) must be clear to design the IT architecture. This article describes a (first) practice, a reference implementation in development, within the VODAN-Africa and Leiden University Medical Center community.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"938-954"},"PeriodicalIF":1.3000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data Access, Control, and Privacy Protection in the VODAN-Africa Architecture\",\"authors\":\"Putu Hadi Purnama Jati, M. Reisen, E. Flikkenschild, Fransisca Oladipo, Bert Meerman, Ruduan Plug, Sara Nodehi\",\"doi\":\"10.1162/dint_a_00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Virus Outbreak Data Network (VODAN)-Africa aims to contribute to the publication of Findable Accessible, Interoperable, and Reusable (FAIR) health data under well-defined access conditions. The next step in the VODAN-Africa architecture is to locally deploy the Center for Expanded Data Annotation and Retrieval (CEDAR) and arrange accessibility based on the ‘data visiting’ concept. Locally curated and reposited machine-actionable data can be visited by queries or algorithms, provided that the conditions of access are met. The goal is to enable the multiple (re)use of data with secure access functionality by clinicians (patient care), an idea aligned with the FAIR-based Personal Health Train (PHT) concept. The privacy and security requirements in relation to the FAIR Data Host and the FAIRification workspace (to produce metadata) or dashboard (for the patient) must be clear to design the IT architecture. This article describes a (first) practice, a reference implementation in development, within the VODAN-Africa and Leiden University Medical Center community.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"4 1\",\"pages\":\"938-954\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00180\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00180","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

摘要病毒爆发数据网络(VODAN)-非洲旨在为在明确的访问条件下发布可查找、可互操作和可重复使用(FAIR)的健康数据做出贡献。VODAN非洲架构的下一步是在本地部署扩展数据注释和检索中心(CEDAR),并根据“数据访问”概念安排可访问性。只要满足访问条件,就可以通过查询或算法访问本地策划和重新定位的机器可操作数据。目标是使临床医生(患者护理)能够通过安全访问功能多次(重复)使用数据,这一想法与基于FAIR的个人健康培训(PHT)概念相一致。设计IT架构时,必须明确与FAIR数据主机和FAIRification工作空间(用于生成元数据)或仪表板(用于患者)相关的隐私和安全要求。本文描述了VODAN非洲和莱顿大学医学中心社区内的(第一)实践,即开发中的参考实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Access, Control, and Privacy Protection in the VODAN-Africa Architecture
Abstract The Virus Outbreak Data Network (VODAN)-Africa aims to contribute to the publication of Findable Accessible, Interoperable, and Reusable (FAIR) health data under well-defined access conditions. The next step in the VODAN-Africa architecture is to locally deploy the Center for Expanded Data Annotation and Retrieval (CEDAR) and arrange accessibility based on the ‘data visiting’ concept. Locally curated and reposited machine-actionable data can be visited by queries or algorithms, provided that the conditions of access are met. The goal is to enable the multiple (re)use of data with secure access functionality by clinicians (patient care), an idea aligned with the FAIR-based Personal Health Train (PHT) concept. The privacy and security requirements in relation to the FAIR Data Host and the FAIRification workspace (to produce metadata) or dashboard (for the patient) must be clear to design the IT architecture. This article describes a (first) practice, a reference implementation in development, within the VODAN-Africa and Leiden University Medical Center community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1