无线入侵检测系统的Naive Bayes和深度学习模型

Pub Date : 2021-05-28 DOI:10.1504/IJESMS.2021.115527
Hariharan Rajadurai, U. Gandhi
{"title":"无线入侵检测系统的Naive Bayes和深度学习模型","authors":"Hariharan Rajadurai, U. Gandhi","doi":"10.1504/IJESMS.2021.115527","DOIUrl":null,"url":null,"abstract":"In recent years, online data is exponentially increasing on day basis and accessing that data un-authentically is a major issue. The intruder or attacker is an individual or team who violates the rules of governess by accessing or modifying the data. To protect the online data, there must be a proper mechanism called intrusion detection system (IDS) to be implemented and followed in a right manner. This paper presents a hybrid model for IDS to detect the various attacks in NSL-KDD dataset. The hybrid model is built with a combination of naive Bayes and deep learning (NB-DL) approaches. The NB-DL is tested with benchmarked datasets, and it has scored high accuracy in detecting the attacks. Nowadays, combining two or more different machine learning techniques is popular as multiple methods performance is averaged or selected the best performance between and so on.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Naive Bayes and deep learning model for wireless intrusion detection systems\",\"authors\":\"Hariharan Rajadurai, U. Gandhi\",\"doi\":\"10.1504/IJESMS.2021.115527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, online data is exponentially increasing on day basis and accessing that data un-authentically is a major issue. The intruder or attacker is an individual or team who violates the rules of governess by accessing or modifying the data. To protect the online data, there must be a proper mechanism called intrusion detection system (IDS) to be implemented and followed in a right manner. This paper presents a hybrid model for IDS to detect the various attacks in NSL-KDD dataset. The hybrid model is built with a combination of naive Bayes and deep learning (NB-DL) approaches. The NB-DL is tested with benchmarked datasets, and it has scored high accuracy in detecting the attacks. Nowadays, combining two or more different machine learning techniques is popular as multiple methods performance is averaged or selected the best performance between and so on.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJESMS.2021.115527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJESMS.2021.115527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,在线数据每天都在呈指数级增长,而不真实地访问这些数据是一个主要问题。入侵者或攻击者是指通过访问或修改数据来违反政府规则的个人或团队。为了保护在线数据,必须有一个适当的机制,称为入侵检测系统(IDS),以正确的方式实现和遵循。本文提出了一种用于IDS检测NSL-KDD数据集中各种攻击的混合模型。混合模型是结合朴素贝叶斯和深度学习(NB-DL)方法建立的。NB-DL是用基准数据集测试的,它在检测攻击方面取得了很高的准确性。如今,将两种或多种不同的机器学习技术相结合是很流行的,因为对多种方法的性能进行平均或从中选择最佳性能等等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Naive Bayes and deep learning model for wireless intrusion detection systems
In recent years, online data is exponentially increasing on day basis and accessing that data un-authentically is a major issue. The intruder or attacker is an individual or team who violates the rules of governess by accessing or modifying the data. To protect the online data, there must be a proper mechanism called intrusion detection system (IDS) to be implemented and followed in a right manner. This paper presents a hybrid model for IDS to detect the various attacks in NSL-KDD dataset. The hybrid model is built with a combination of naive Bayes and deep learning (NB-DL) approaches. The NB-DL is tested with benchmarked datasets, and it has scored high accuracy in detecting the attacks. Nowadays, combining two or more different machine learning techniques is popular as multiple methods performance is averaged or selected the best performance between and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1