低成本和可回收的光催化剂:金属氧化物/聚合物复合材料在染料催化分解中的应用

Photochem Pub Date : 2022-08-24 DOI:10.3390/photochem2030047
Timur Borjigin, M. Schmitt, F. Morlet‐Savary, P. Xiao, J. Lalevée
{"title":"低成本和可回收的光催化剂:金属氧化物/聚合物复合材料在染料催化分解中的应用","authors":"Timur Borjigin, M. Schmitt, F. Morlet‐Savary, P. Xiao, J. Lalevée","doi":"10.3390/photochem2030047","DOIUrl":null,"url":null,"abstract":"Novel metal oxide/polymer composite photocatalysts prepared by photocuring with common metal oxide particles (ZnO or CeO2) and acrylic ester monomers have been investigated for the first time. Metal oxide particles were fully integrated with the acrylate polymer network based on the crosslink of poly ethylene glycol diacrylate (noted below as Poly-PEG) by photopolymerization upon mild light source (LED@405 nm) irradiation. The prepared metal/oxide composite showed excellent performance in the photodegradation of Acid Black dye (used as a benchmark pollutant) in an aqueous environment. Indeed, under UV lamp irradiation for 60 min, the degradation of Acid Black reached 59% and 56%, in the presence of 10 wt% ZnO/Poly-PEG and 3 wt% CeO2/poly PEG, respectively. Markedly, the new reported photocatalysts have offered much better performance over the conventional TiO2 photocatalytic material used as a control (39% degradation using 1 wt% TiO2/poly PEG). In turn, the new proposed metal oxide/polymer composites were further characterized by a range of analytical characterization methods, including the swelling test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), dynamic mechanical analysis (DMA), UV–visible diffuse reflectance spectroscopy, and electron spin resonance analysis. The results showed that the new photocatalysts demonstrated excellent water adsorption properties, high-temperature resistance, and excellent recyclability, which were very suitable for wide application and in line with the concept of green chemistry.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes\",\"authors\":\"Timur Borjigin, M. Schmitt, F. Morlet‐Savary, P. Xiao, J. Lalevée\",\"doi\":\"10.3390/photochem2030047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel metal oxide/polymer composite photocatalysts prepared by photocuring with common metal oxide particles (ZnO or CeO2) and acrylic ester monomers have been investigated for the first time. Metal oxide particles were fully integrated with the acrylate polymer network based on the crosslink of poly ethylene glycol diacrylate (noted below as Poly-PEG) by photopolymerization upon mild light source (LED@405 nm) irradiation. The prepared metal/oxide composite showed excellent performance in the photodegradation of Acid Black dye (used as a benchmark pollutant) in an aqueous environment. Indeed, under UV lamp irradiation for 60 min, the degradation of Acid Black reached 59% and 56%, in the presence of 10 wt% ZnO/Poly-PEG and 3 wt% CeO2/poly PEG, respectively. Markedly, the new reported photocatalysts have offered much better performance over the conventional TiO2 photocatalytic material used as a control (39% degradation using 1 wt% TiO2/poly PEG). In turn, the new proposed metal oxide/polymer composites were further characterized by a range of analytical characterization methods, including the swelling test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), dynamic mechanical analysis (DMA), UV–visible diffuse reflectance spectroscopy, and electron spin resonance analysis. The results showed that the new photocatalysts demonstrated excellent water adsorption properties, high-temperature resistance, and excellent recyclability, which were very suitable for wide application and in line with the concept of green chemistry.\",\"PeriodicalId\":74440,\"journal\":{\"name\":\"Photochem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/photochem2030047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文首次研究了以常见金属氧化物颗粒(ZnO或CeO2)和丙烯酸酯单体光固化制备新型金属氧化物/聚合物复合光催化剂。在温和光源(LED@405 nm)照射下,通过光聚合,将金属氧化物颗粒与基于交联聚乙二醇二丙烯酸酯(以下简称聚乙二醇- peg)的丙烯酸酯聚合物网络完全集成。制备的金属/氧化物复合材料在水环境下对酸性黑染料(作为基准污染物)的光降解表现出优异的性能。在紫外灯照射60 min后,氧化锌/聚乙二醇(ZnO/ poly -PEG)浓度为10 wt%、CeO2/聚乙二醇(CeO2/poly -PEG)浓度为3 wt%时,酸黑的降解率分别达到59%和56%。值得注意的是,新报道的光催化剂比传统的TiO2光催化材料提供了更好的性能,作为对照(使用1 wt%的TiO2/聚PEG降解39%)。然后,通过一系列分析表征方法对新提出的金属氧化物/聚合物复合材料进行了进一步的表征,包括膨胀测试、热重分析(TGA)、扫描电子显微镜(SEM)、x射线衍射分析(XRD)、动态力学分析(DMA)、紫外可见漫反射光谱和电子自旋共振分析。结果表明,新型光催化剂具有优异的水吸附性能、耐高温性能和良好的可回收性,非常适合广泛应用,符合绿色化学的理念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes
Novel metal oxide/polymer composite photocatalysts prepared by photocuring with common metal oxide particles (ZnO or CeO2) and acrylic ester monomers have been investigated for the first time. Metal oxide particles were fully integrated with the acrylate polymer network based on the crosslink of poly ethylene glycol diacrylate (noted below as Poly-PEG) by photopolymerization upon mild light source (LED@405 nm) irradiation. The prepared metal/oxide composite showed excellent performance in the photodegradation of Acid Black dye (used as a benchmark pollutant) in an aqueous environment. Indeed, under UV lamp irradiation for 60 min, the degradation of Acid Black reached 59% and 56%, in the presence of 10 wt% ZnO/Poly-PEG and 3 wt% CeO2/poly PEG, respectively. Markedly, the new reported photocatalysts have offered much better performance over the conventional TiO2 photocatalytic material used as a control (39% degradation using 1 wt% TiO2/poly PEG). In turn, the new proposed metal oxide/polymer composites were further characterized by a range of analytical characterization methods, including the swelling test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), dynamic mechanical analysis (DMA), UV–visible diffuse reflectance spectroscopy, and electron spin resonance analysis. The results showed that the new photocatalysts demonstrated excellent water adsorption properties, high-temperature resistance, and excellent recyclability, which were very suitable for wide application and in line with the concept of green chemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊最新文献
Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells Synthesis of Metallic and Metal Oxide Nanoparticles Using Homopolymers as Solid Templates: Luminescent Properties of the Eu+3 Nanoparticle Products A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water Excited-State Dynamics of Carbazole and tert-Butyl-Carbazole in Thin Films Charge-Selective Photocatalytic Degradation of Organic Dyes Driven by Naturally Occurring Halloysite Nanotubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1