Meryem Meliani, A. El Barkany, I. El abbassi, M. Mahmoudi
{"title":"摩洛哥智能电网面临的挑战及时间序列能源需求预测","authors":"Meryem Meliani, A. El Barkany, I. El abbassi, M. Mahmoudi","doi":"10.4028/p-2gufv6","DOIUrl":null,"url":null,"abstract":"Facing development requirements and changes in the global energy context, Morocco has begun a process of diversification of the national energy mix in favor of renewable energy, while ensuring a competitive energy, in terms of costs, availability of products and their security and sustainability. Within this framework, Morocco launched in 2009 a national energy strategy whose major orientations focus on the security of energy supply and the generalization of its access, the preservation of the environment, through the use of renewable energy, energy efficiency, the strengthening of interconnection and regional cooperation. Through this article, the current state of the Moroccan network will be studied, as well as its potential in terms of renewable energy. Some strategies to overcome the challenges facing smart grid deployment in Morocco will also be presented. Then, the long-term energy demand, generation capacity, and renewable energy evolution in Morocco around 2030 will be estimated based on a time series using the artificial neural network method, which can be injected into the grid without causing any transit restrictions on the utility network or on the whole power system. As a result, the wind power available capacity was estimated to be 4087 MW, and the solar power available capacity was estimated to be 4713 MW by 2030. These results will be then compared to those estimated with the mathematical method. As well as, with the accuracy results of similar studies with different time series forecasting techniques. The accuracy value of this study is between 1.2% and 3.5%. So, the performance and viability of the proposed model can be studied.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smart Grid Challenges in Morocco and an Energy Demand Forecasting with Time Series\",\"authors\":\"Meryem Meliani, A. El Barkany, I. El abbassi, M. Mahmoudi\",\"doi\":\"10.4028/p-2gufv6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing development requirements and changes in the global energy context, Morocco has begun a process of diversification of the national energy mix in favor of renewable energy, while ensuring a competitive energy, in terms of costs, availability of products and their security and sustainability. Within this framework, Morocco launched in 2009 a national energy strategy whose major orientations focus on the security of energy supply and the generalization of its access, the preservation of the environment, through the use of renewable energy, energy efficiency, the strengthening of interconnection and regional cooperation. Through this article, the current state of the Moroccan network will be studied, as well as its potential in terms of renewable energy. Some strategies to overcome the challenges facing smart grid deployment in Morocco will also be presented. Then, the long-term energy demand, generation capacity, and renewable energy evolution in Morocco around 2030 will be estimated based on a time series using the artificial neural network method, which can be injected into the grid without causing any transit restrictions on the utility network or on the whole power system. As a result, the wind power available capacity was estimated to be 4087 MW, and the solar power available capacity was estimated to be 4713 MW by 2030. These results will be then compared to those estimated with the mathematical method. As well as, with the accuracy results of similar studies with different time series forecasting techniques. The accuracy value of this study is between 1.2% and 3.5%. So, the performance and viability of the proposed model can be studied.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-2gufv6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-2gufv6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Smart Grid Challenges in Morocco and an Energy Demand Forecasting with Time Series
Facing development requirements and changes in the global energy context, Morocco has begun a process of diversification of the national energy mix in favor of renewable energy, while ensuring a competitive energy, in terms of costs, availability of products and their security and sustainability. Within this framework, Morocco launched in 2009 a national energy strategy whose major orientations focus on the security of energy supply and the generalization of its access, the preservation of the environment, through the use of renewable energy, energy efficiency, the strengthening of interconnection and regional cooperation. Through this article, the current state of the Moroccan network will be studied, as well as its potential in terms of renewable energy. Some strategies to overcome the challenges facing smart grid deployment in Morocco will also be presented. Then, the long-term energy demand, generation capacity, and renewable energy evolution in Morocco around 2030 will be estimated based on a time series using the artificial neural network method, which can be injected into the grid without causing any transit restrictions on the utility network or on the whole power system. As a result, the wind power available capacity was estimated to be 4087 MW, and the solar power available capacity was estimated to be 4713 MW by 2030. These results will be then compared to those estimated with the mathematical method. As well as, with the accuracy results of similar studies with different time series forecasting techniques. The accuracy value of this study is between 1.2% and 3.5%. So, the performance and viability of the proposed model can be studied.
期刊介绍:
"International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.