Bayes线性Bayes网络及其在预测指标中的应用

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2022-01-01 DOI:10.1214/22-ba1314
W. A. J. Al-Taie, M. Farrow
{"title":"Bayes线性Bayes网络及其在预测指标中的应用","authors":"W. A. J. Al-Taie, M. Farrow","doi":"10.1214/22-ba1314","DOIUrl":null,"url":null,"abstract":". Bayes linear kinematics and Bayes linear Bayes graphical models provide an extension of Bayes linear methods so that full conditional updates may be combined with Bayes linear belief adjustment. The use of Bayes linear kinematics eliminates the problem of non-commutativity which was observed in earlier work involving moment-based belief updates. In this paper we describe this approach and investigate its application to the rapid computation of prognostic index values in survival when a patient’s values may only be available for a subset of covariates. We consider the use of covariates of various kinds and introduce the use of non-conjugate marginal updates. We apply the technique to an example concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear predictor of the lifetime distribution as a latent variable and use its expectation, given whatever covariates are available, as a prognostic index.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayes Linear Bayes Networks with an Application to Prognostic Indices\",\"authors\":\"W. A. J. Al-Taie, M. Farrow\",\"doi\":\"10.1214/22-ba1314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Bayes linear kinematics and Bayes linear Bayes graphical models provide an extension of Bayes linear methods so that full conditional updates may be combined with Bayes linear belief adjustment. The use of Bayes linear kinematics eliminates the problem of non-commutativity which was observed in earlier work involving moment-based belief updates. In this paper we describe this approach and investigate its application to the rapid computation of prognostic index values in survival when a patient’s values may only be available for a subset of covariates. We consider the use of covariates of various kinds and introduce the use of non-conjugate marginal updates. We apply the technique to an example concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear predictor of the lifetime distribution as a latent variable and use its expectation, given whatever covariates are available, as a prognostic index.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ba1314\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1314","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

. 贝叶斯线性运动学和贝叶斯线性贝叶斯图形模型提供了贝叶斯线性方法的扩展,使完全条件更新可以与贝叶斯线性信念调整相结合。贝叶斯线性运动学的使用消除了在早期基于矩的信念更新工作中观察到的非交换性问题。在本文中,我们描述了这种方法,并研究了它在快速计算生存预后指标值时的应用,当患者的值只能用于一个子集的协变量时。我们考虑了各种协变量的使用,并引入了非共轭边缘更新的使用。我们将该技术应用于一个关于非霍奇金淋巴瘤患者的例子,其中我们将寿命分布的线性预测因子视为潜在变量,并使用其期望,给定任何可用的协变量,作为预后指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayes Linear Bayes Networks with an Application to Prognostic Indices
. Bayes linear kinematics and Bayes linear Bayes graphical models provide an extension of Bayes linear methods so that full conditional updates may be combined with Bayes linear belief adjustment. The use of Bayes linear kinematics eliminates the problem of non-commutativity which was observed in earlier work involving moment-based belief updates. In this paper we describe this approach and investigate its application to the rapid computation of prognostic index values in survival when a patient’s values may only be available for a subset of covariates. We consider the use of covariates of various kinds and introduce the use of non-conjugate marginal updates. We apply the technique to an example concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear predictor of the lifetime distribution as a latent variable and use its expectation, given whatever covariates are available, as a prognostic index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Reproducible Model Selection Using Bagged Posteriors. Bayesian ex Post Evaluation of Recursive Multi-Step-Ahead Density Prediction Objective Bayesian Model Selection for Spatial Hierarchical Models with Intrinsic Conditional Autoregressive Priors Laplace Power-Expected-Posterior Priors for Logistic Regression Dynamic Graphical Models with Variable Selection for Effective Connectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1