预测新冠肺炎疫情演变的新回归模型:在意大利数据中的应用

D. Sisti, E. Rocchi, S. Peluso, S. Amatori, M. Carletti
{"title":"预测新冠肺炎疫情演变的新回归模型:在意大利数据中的应用","authors":"D. Sisti, E. Rocchi, S. Peluso, S. Amatori, M. Carletti","doi":"10.1080/24709360.2021.1978270","DOIUrl":null,"url":null,"abstract":"The novel coronavirus SARS-CoV-2 was first identified in China in December 2019. In just over five months, the virus affected over 4 million people and caused about 300,000 deaths. This study aimed to model new COVID-19 cases in Italian regions using a new curve. A new empirical curve is proposed to model the number of new cases of COVID-19. It resembles a known exponential growth curve, which has a straight line as an exponent, but in the growth curve proposed, the exponent is a logistic curve multiplied for a straight line. This curve shows an initial phase, the expected exponential growth, then rises to the maximum value and finally reaches zero. We characterized the epidemic growth patterns for the entire Italian nation and each of the 20 Italian regions. The estimated growth curve has been used to calculate the expected time of the beginning, the time related to peak, and the end of the epidemics. Our analysis explores the development of the outbreaks in Italy and the impact of the containment measures. Data obtained are useful to forecast future scenarios and the possible end of the epidemic.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"6 1","pages":"48 - 56"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new regression model for the forecasting of COVID-19 outbreak evolution: an application to Italian data\",\"authors\":\"D. Sisti, E. Rocchi, S. Peluso, S. Amatori, M. Carletti\",\"doi\":\"10.1080/24709360.2021.1978270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel coronavirus SARS-CoV-2 was first identified in China in December 2019. In just over five months, the virus affected over 4 million people and caused about 300,000 deaths. This study aimed to model new COVID-19 cases in Italian regions using a new curve. A new empirical curve is proposed to model the number of new cases of COVID-19. It resembles a known exponential growth curve, which has a straight line as an exponent, but in the growth curve proposed, the exponent is a logistic curve multiplied for a straight line. This curve shows an initial phase, the expected exponential growth, then rises to the maximum value and finally reaches zero. We characterized the epidemic growth patterns for the entire Italian nation and each of the 20 Italian regions. The estimated growth curve has been used to calculate the expected time of the beginning, the time related to peak, and the end of the epidemics. Our analysis explores the development of the outbreaks in Italy and the impact of the containment measures. Data obtained are useful to forecast future scenarios and the possible end of the epidemic.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"6 1\",\"pages\":\"48 - 56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2021.1978270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1978270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

新型冠状病毒SARS-CoV-2于2019年12月在中国首次被发现。在短短五个多月内,该病毒影响了400多万人,造成约30万人死亡。这项研究旨在使用一条新曲线对意大利地区新的新冠肺炎病例进行建模。提出了一种新的经验曲线来模拟新冠肺炎新增病例数。它类似于一条已知的指数增长曲线,它有一条直线作为指数,但在所提出的增长曲线中,指数是一条乘以直线的逻辑曲线。这条曲线显示了一个初始阶段,即预期的指数增长,然后上升到最大值,最终达到零。我们描述了整个意大利国家和意大利20个地区的疫情增长模式。估计的增长曲线已用于计算流行病开始的预期时间、与峰值相关的时间和结束时间。我们的分析探讨了意大利疫情的发展以及遏制措施的影响。所获得的数据有助于预测未来的情况和疫情可能结束的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new regression model for the forecasting of COVID-19 outbreak evolution: an application to Italian data
The novel coronavirus SARS-CoV-2 was first identified in China in December 2019. In just over five months, the virus affected over 4 million people and caused about 300,000 deaths. This study aimed to model new COVID-19 cases in Italian regions using a new curve. A new empirical curve is proposed to model the number of new cases of COVID-19. It resembles a known exponential growth curve, which has a straight line as an exponent, but in the growth curve proposed, the exponent is a logistic curve multiplied for a straight line. This curve shows an initial phase, the expected exponential growth, then rises to the maximum value and finally reaches zero. We characterized the epidemic growth patterns for the entire Italian nation and each of the 20 Italian regions. The estimated growth curve has been used to calculate the expected time of the beginning, the time related to peak, and the end of the epidemics. Our analysis explores the development of the outbreaks in Italy and the impact of the containment measures. Data obtained are useful to forecast future scenarios and the possible end of the epidemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1