用于运动意图识别的无创人-假体接口:综述

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2021-06-04 DOI:10.34133/2021/9863761
Dongfang Xu, Qining Wang
{"title":"用于运动意图识别的无创人-假体接口:综述","authors":"Dongfang Xu, Qining Wang","doi":"10.34133/2021/9863761","DOIUrl":null,"url":null,"abstract":"The lower-limb robotic prostheses can provide assistance for amputees' daily activities by restoring the biomechanical functions of missing limb(s). To set proper control strategies and develop the corresponding controller for robotic prosthesis, a prosthesis user's intent must be acquired in time, which is still a major challenge and has attracted intensive attentions. This work focuses on the robotic prosthesis user's locomotion intent recognition based on the noninvasive sensing methods from the recognition task perspective (locomotion mode recognition, gait event detection, and continuous gait phase estimation) and reviews the state-of-the-art intent recognition techniques in a lower-limb prosthesis scope. The current research status, including recognition approach, progress, challenges, and future prospects in the human's intent recognition, has been reviewed. In particular for the recognition approach, the paper analyzes the recent studies and discusses the role of each element in locomotion intent recognition. This work summarizes the existing research results and problems and contributes a general framework for the intent recognition based on lower-limb prosthesis.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review\",\"authors\":\"Dongfang Xu, Qining Wang\",\"doi\":\"10.34133/2021/9863761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lower-limb robotic prostheses can provide assistance for amputees' daily activities by restoring the biomechanical functions of missing limb(s). To set proper control strategies and develop the corresponding controller for robotic prosthesis, a prosthesis user's intent must be acquired in time, which is still a major challenge and has attracted intensive attentions. This work focuses on the robotic prosthesis user's locomotion intent recognition based on the noninvasive sensing methods from the recognition task perspective (locomotion mode recognition, gait event detection, and continuous gait phase estimation) and reviews the state-of-the-art intent recognition techniques in a lower-limb prosthesis scope. The current research status, including recognition approach, progress, challenges, and future prospects in the human's intent recognition, has been reviewed. In particular for the recognition approach, the paper analyzes the recent studies and discusses the role of each element in locomotion intent recognition. This work summarizes the existing research results and problems and contributes a general framework for the intent recognition based on lower-limb prosthesis.\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9863761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2021/9863761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 21

摘要

下肢机器人假肢可以通过恢复失去肢体的生物力学功能,为截肢者的日常活动提供帮助。为了制定合适的假肢机器人控制策略和开发相应的控制器,必须及时获取假肢使用者的意图,这仍然是一个重大挑战,并引起了人们的广泛关注。本文从识别任务的角度(运动模式识别、步态事件检测和连续步态相位估计)对基于无创传感方法的机器人义肢使用者的运动意图识别进行了研究,并对目前下肢义肢范围内的最新意图识别技术进行了综述。综述了人类意图识别的研究现状,包括识别方法、进展、挑战和未来展望。特别是在识别方法方面,本文分析了近年来的研究成果,讨论了各要素在动作意图识别中的作用。本文总结了现有的研究成果和存在的问题,提出了基于下肢假肢的意图识别的总体框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review
The lower-limb robotic prostheses can provide assistance for amputees' daily activities by restoring the biomechanical functions of missing limb(s). To set proper control strategies and develop the corresponding controller for robotic prosthesis, a prosthesis user's intent must be acquired in time, which is still a major challenge and has attracted intensive attentions. This work focuses on the robotic prosthesis user's locomotion intent recognition based on the noninvasive sensing methods from the recognition task perspective (locomotion mode recognition, gait event detection, and continuous gait phase estimation) and reviews the state-of-the-art intent recognition techniques in a lower-limb prosthesis scope. The current research status, including recognition approach, progress, challenges, and future prospects in the human's intent recognition, has been reviewed. In particular for the recognition approach, the paper analyzes the recent studies and discusses the role of each element in locomotion intent recognition. This work summarizes the existing research results and problems and contributes a general framework for the intent recognition based on lower-limb prosthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1