独立源和相依源混合噪声的鲁棒盲分离方法

A. Ghazdali, M. Hakim, A. Laghrib, N. Mamouni, A. Metrane, A. Ourdou
{"title":"独立源和相依源混合噪声的鲁棒盲分离方法","authors":"A. Ghazdali, M. Hakim, A. Laghrib, N. Mamouni, A. Metrane, A. Ourdou","doi":"10.23939/mmc2021.04.761","DOIUrl":null,"url":null,"abstract":"In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent/dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust approach for blind separation of noisy mixtures of independent and dependent sources\",\"authors\":\"A. Ghazdali, M. Hakim, A. Laghrib, N. Mamouni, A. Metrane, A. Ourdou\",\"doi\":\"10.23939/mmc2021.04.761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent/dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2021.04.761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2021.04.761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种新的盲源分离(BSS)方法,该方法处理噪声独立/相关源的混合。我们通过最小化一个标准来实现这一点,该标准将基于依赖或独立源的Kullback–Leibler散度的分离部分与采用双边总变异(BTV)来对观测值进行去噪的正则化部分融合在一起。该算法利用原对偶算法去除噪声,同时采用梯度下降法提取信号源。我们的算法已经证明了它的有效性和效率,也超过了现有的标准BSS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust approach for blind separation of noisy mixtures of independent and dependent sources
In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent/dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
期刊最新文献
Analytical images of Kepler's equation solutions and their applications Fractional Brownian motion in financial engineering models Multi-criteria decision making based on novel distance measure in intuitionistic fuzzy environment Stability analysis of a fractional model for the transmission of the cochineal Modeling the financial flows impact on the diagnosis of an enterprise's economic security level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1