亚太赫兹本地振荡器的谐振系统

Q4 Physics and Astronomy Radio Physics and Radio Astronomy Pub Date : 2022-06-01 DOI:10.15407/rpra27.01.064
I. Kuzmichev, B. I. Muzychishin, А. Y. Popkov, Аlexander V. May, A. May
{"title":"亚太赫兹本地振荡器的谐振系统","authors":"I. Kuzmichev, B. I. Muzychishin, А. Y. Popkov, Аlexander V. May, A. May","doi":"10.15407/rpra27.01.064","DOIUrl":null,"url":null,"abstract":"Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemispherical resonator is coupled to its input waveguide via aperture-type coupling elements. The diameter 2a of the OR mirror apertures is 38 mm, while the curvature radius of the spherical reflector is R = 39 mm and the normalized distance between the mirrors is L/R = 0.593. Two aperture coupling elements of dimensions a× b = 6.9 × 9.6 mm are used to excite the OR. They permit controlling separately the functions of field-to-field matching (modes in the resonator and in the waveguide) and volume- to-volume coupling of the structural elements (the resonator and the waveguide). They are located at the center of the planar mirror. The field matching is determined by the geometric dimensions of the coupling elements, whereas the coupling matching is determined by the period of the one-dimensional E-polarized grating in their apertures. The Gunn diodes are used as generators, operating at the frequencies of the fundamental (75 GHz) andthe second-order (150 GHz) harmonics. The excitation efficiency of the TEM1011 oscillation in the OR of the geometry specified here, using aperture-type coupling elements as described, is 81.5%. Design/methodology/approach. The excitation efficiency of higher-order oscillation modes ТЕМ10q in the OR being driven by an incident ТЕ10 mode that arrives via two rectangular guides, is evalua-ted using the antenna surface utilization factor. The reflection coefficient from the OR and the loaded Q-factor are estimated in the familiar technique of partial reflection coefficients summation. Findings. As has been shown, in an OR of parameters 2а= 38 mm, R= 78 mm, and L/R= 0.287 TEM1022 oscillations are excited at the frequency of the Gunn diode’s second-order harmonic (i.e., 150 GHz) with an efficiency of 84%. In that same resonator, the excitation efficiency of the TEM1011 mode at the fundamental Gunn diode’s harmonic (frequency of 75 GHz) equals 54%. By placing one-dimensional (E-polarized) wire gratings in the aperture of the coupling elements it proves possible to match the resonator with the waveguide. It has been found that in the case of a l = 0.2 mm spatial period of the wire grating and matched excitation of the resonator at f = 150 GHz (i.e. Г150 = 0), the reflection coefficient Г75 from the OR at f = 75 GHz equals 0.637. Upon excitation in the OR of oscillations in the TEM1022 mode, the total loss at f = 150 GHz is –1.23 dB. With TEM1011 oscillations excited in the same resonator at a frequency of 75 GHz, the total losses increase up to –5.4 dB. Conclusions. The analysis has shown that an OR implementing the proposed method of excitation of higher-order axially asymmetric for constructing a subterahertz range local oscillator. Moreover, such a resonant system may be considered both as a power combiner and a diplexer (filter).","PeriodicalId":33380,"journal":{"name":"Radio Physics and Radio Astronomy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR\",\"authors\":\"I. Kuzmichev, B. I. Muzychishin, А. Y. Popkov, Аlexander V. May, A. May\",\"doi\":\"10.15407/rpra27.01.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemispherical resonator is coupled to its input waveguide via aperture-type coupling elements. The diameter 2a of the OR mirror apertures is 38 mm, while the curvature radius of the spherical reflector is R = 39 mm and the normalized distance between the mirrors is L/R = 0.593. Two aperture coupling elements of dimensions a× b = 6.9 × 9.6 mm are used to excite the OR. They permit controlling separately the functions of field-to-field matching (modes in the resonator and in the waveguide) and volume- to-volume coupling of the structural elements (the resonator and the waveguide). They are located at the center of the planar mirror. The field matching is determined by the geometric dimensions of the coupling elements, whereas the coupling matching is determined by the period of the one-dimensional E-polarized grating in their apertures. The Gunn diodes are used as generators, operating at the frequencies of the fundamental (75 GHz) andthe second-order (150 GHz) harmonics. The excitation efficiency of the TEM1011 oscillation in the OR of the geometry specified here, using aperture-type coupling elements as described, is 81.5%. Design/methodology/approach. The excitation efficiency of higher-order oscillation modes ТЕМ10q in the OR being driven by an incident ТЕ10 mode that arrives via two rectangular guides, is evalua-ted using the antenna surface utilization factor. The reflection coefficient from the OR and the loaded Q-factor are estimated in the familiar technique of partial reflection coefficients summation. Findings. As has been shown, in an OR of parameters 2а= 38 mm, R= 78 mm, and L/R= 0.287 TEM1022 oscillations are excited at the frequency of the Gunn diode’s second-order harmonic (i.e., 150 GHz) with an efficiency of 84%. In that same resonator, the excitation efficiency of the TEM1011 mode at the fundamental Gunn diode’s harmonic (frequency of 75 GHz) equals 54%. By placing one-dimensional (E-polarized) wire gratings in the aperture of the coupling elements it proves possible to match the resonator with the waveguide. It has been found that in the case of a l = 0.2 mm spatial period of the wire grating and matched excitation of the resonator at f = 150 GHz (i.e. Г150 = 0), the reflection coefficient Г75 from the OR at f = 75 GHz equals 0.637. Upon excitation in the OR of oscillations in the TEM1022 mode, the total loss at f = 150 GHz is –1.23 dB. With TEM1011 oscillations excited in the same resonator at a frequency of 75 GHz, the total losses increase up to –5.4 dB. Conclusions. The analysis has shown that an OR implementing the proposed method of excitation of higher-order axially asymmetric for constructing a subterahertz range local oscillator. Moreover, such a resonant system may be considered both as a power combiner and a diplexer (filter).\",\"PeriodicalId\":33380,\"journal\":{\"name\":\"Radio Physics and Radio Astronomy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Physics and Radio Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/rpra27.01.064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Physics and Radio Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rpra27.01.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

意图研究了在半球形开放谐振器(OR)中,在4毫米和2毫米波长范围内的耿氏二极管基波和二次谐波频率下激发的第一高阶轴向不对称振荡模式(TEM10q)的激发效率。半球形谐振器通过孔径型耦合元件耦合到其输入波导。OR反射镜孔径的直径2a为38mm,而球面反射器的曲率半径为R=39mm,反射镜之间的归一化距离为L/R=0.593。两个尺寸为a×b=6.9×9.6mm的孔径耦合元件用于激发OR。它们允许分别控制结构元件(谐振器和波导)的场-场匹配(谐振器中的模式和波导中的模式)和体积-体积耦合的功能。它们位于平面镜的中心。场匹配由耦合元件的几何尺寸决定,而耦合匹配由一维E偏振光栅在其孔径中的周期决定。Gunn二极管用作发电机,工作在基波(75 GHz)和二阶(150 GHz)谐波的频率下。使用如上所述的孔径型耦合元件,在此处指定的几何形状的OR中TEM1011振荡的激发效率为81.5%。设计/方法/方法。OR中由通过两个矩形波导到达的入射ТА10模式驱动的高阶振荡模式ТМ10q的激励效率使用天线表面利用系数进行评估。根据OR和加载的Q因子的反射系数是在熟悉的部分反射系数求和技术中估计的。调查结果。如前所述,在参数为2а=38 mm、R=78 mm和L/R=0.287的OR中,TEM1022振荡以耿氏二极管的二阶谐波频率(即150 GHz)激发,效率为84%。在同一谐振器中,TEM1011模式在基本耿氏二极管谐波(频率75GHz)下的激励效率等于54%。通过在耦合元件的孔径中放置一维(E偏振)线光栅,证明了将谐振器与波导匹配是可能的。已经发现,在线栅的l=0.2 mm空间周期和谐振器在f=150 GHz(即Г150=0)的匹配激励的情况下,在f=75 GHz时OR的反射系数Г75等于0.637。在TEM1022模式振荡的OR中激发时,f=150 GHz时的总损耗为–1.23 dB。在同一谐振器中以75 GHz的频率激发TEM1011振荡时,总损耗增加至–5.4 dB。结论。分析表明,OR实现了所提出的高阶轴向不对称激励方法,用于构建亚太赫兹范围的本地振荡器。此外,这种谐振系统可以被认为既是功率组合器又是双工器(滤波器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemispherical resonator is coupled to its input waveguide via aperture-type coupling elements. The diameter 2a of the OR mirror apertures is 38 mm, while the curvature radius of the spherical reflector is R = 39 mm and the normalized distance between the mirrors is L/R = 0.593. Two aperture coupling elements of dimensions a× b = 6.9 × 9.6 mm are used to excite the OR. They permit controlling separately the functions of field-to-field matching (modes in the resonator and in the waveguide) and volume- to-volume coupling of the structural elements (the resonator and the waveguide). They are located at the center of the planar mirror. The field matching is determined by the geometric dimensions of the coupling elements, whereas the coupling matching is determined by the period of the one-dimensional E-polarized grating in their apertures. The Gunn diodes are used as generators, operating at the frequencies of the fundamental (75 GHz) andthe second-order (150 GHz) harmonics. The excitation efficiency of the TEM1011 oscillation in the OR of the geometry specified here, using aperture-type coupling elements as described, is 81.5%. Design/methodology/approach. The excitation efficiency of higher-order oscillation modes ТЕМ10q in the OR being driven by an incident ТЕ10 mode that arrives via two rectangular guides, is evalua-ted using the antenna surface utilization factor. The reflection coefficient from the OR and the loaded Q-factor are estimated in the familiar technique of partial reflection coefficients summation. Findings. As has been shown, in an OR of parameters 2а= 38 mm, R= 78 mm, and L/R= 0.287 TEM1022 oscillations are excited at the frequency of the Gunn diode’s second-order harmonic (i.e., 150 GHz) with an efficiency of 84%. In that same resonator, the excitation efficiency of the TEM1011 mode at the fundamental Gunn diode’s harmonic (frequency of 75 GHz) equals 54%. By placing one-dimensional (E-polarized) wire gratings in the aperture of the coupling elements it proves possible to match the resonator with the waveguide. It has been found that in the case of a l = 0.2 mm spatial period of the wire grating and matched excitation of the resonator at f = 150 GHz (i.e. Г150 = 0), the reflection coefficient Г75 from the OR at f = 75 GHz equals 0.637. Upon excitation in the OR of oscillations in the TEM1022 mode, the total loss at f = 150 GHz is –1.23 dB. With TEM1011 oscillations excited in the same resonator at a frequency of 75 GHz, the total losses increase up to –5.4 dB. Conclusions. The analysis has shown that an OR implementing the proposed method of excitation of higher-order axially asymmetric for constructing a subterahertz range local oscillator. Moreover, such a resonant system may be considered both as a power combiner and a diplexer (filter).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Physics and Radio Astronomy
Radio Physics and Radio Astronomy Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊最新文献
GROUND BASED SUPPORT OF THE SPACE MISSION PARKER PERFORMED WITH UKRAINIAN LOW FREQUENCY RADIO TELESCOPES FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES OMNIDIRECTIONAL MILLIMETER-WAVELENGTH ANTENNAS BASED ON SEGMENTAL DIELECTRIC RESONATORS WHICH SUPPORT WHISPERING GALLERY MODES V. P. SHESTOPALOV AND HIS SCIENTIFIC SCHOOL: FROM QUASISTATICS TO QUASIOPTICS (to mark V.P.'s birth centenary) PROGRESS IN THE STUDY OF DECAMETER-WAVELENGTH SOLAR RADIO EMISSION WITH UKRAINIAN RADIO TELESCOPES. Part 1. (Invited paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1