镍-铁氧体-活性炭复合材料催化氰化物离子氧化

C. Feijoó, E. Torre, R. Narváez
{"title":"镍-铁氧体-活性炭复合材料催化氰化物离子氧化","authors":"C. Feijoó, E. Torre, R. Narváez","doi":"10.22034/GJESM.2021.02.07","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES: Cyanide is a commonly-used substance in the gold recovery processes due to its high affinity for forming complexes with the precious metal, but inadequate handling and its final arrangement can lead to severe environmental contamination. In this context, this research focuses on the preparation of nickel ferrite-activated carbon catalysts for catalytic oxidation of cyanide ion in the presence of air.  METHODS: Hydrated salts of nickel (Ni(NO3)2·6H2O) and iron (Fe(NO3)3·9H2O) were used as precursors. The preparation pathways of ferrite and of ferrite-activated carbon composites were hydro-chemical with oxalic acid (C2H2O4) and co-precipitation with sodium hydroxide. The parameters evaluated for catalyst preparation were Ni/Fe molar ratios (1/1.5 and 1/2), calcination times and temperatures (2-4 h/600-900°C), and ferrite-activated carbon mass ratios in the case of composites (1/1, 1/2 and 1/3).  FINDINGS: Oxidation results showed that the ideal Ni/Fe molar ratio was 1/2, and the calcination time was 4 h at 600 and 900ᵒC for co-precipitation and hydro-chemical pathways of nickel ferrites, respectively. The catalyst that showed the greatest capacity for cyanide transformation was that obtained by the hydro-chemical pathway with oxalic acid, achieving efficiencies of 96.3% oxidation of cyanide ion. It was also determined that the largest impregnation of ferrite on the carbonaceous surface was 52.6% through the treatment with oxalic acid, with which the composite was obtained with the best catalytic properties of cyanide ion.  CONCLUSION: Nickel ferrite is able to oxidize cyanide ion to cyanate ion; being the ferrite-activated carbon combination, with which composite materials with catalytic properties of cyanide ion are obtained. Because of this, the materials studied could be applied in the detoxification of cyanurate solutions from metallurgical processes.","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cyanide ion oxidation by catalytic effect of nickel ferrites activated carbon composites\",\"authors\":\"C. Feijoó, E. Torre, R. Narváez\",\"doi\":\"10.22034/GJESM.2021.02.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND AND OBJECTIVES: Cyanide is a commonly-used substance in the gold recovery processes due to its high affinity for forming complexes with the precious metal, but inadequate handling and its final arrangement can lead to severe environmental contamination. In this context, this research focuses on the preparation of nickel ferrite-activated carbon catalysts for catalytic oxidation of cyanide ion in the presence of air.  METHODS: Hydrated salts of nickel (Ni(NO3)2·6H2O) and iron (Fe(NO3)3·9H2O) were used as precursors. The preparation pathways of ferrite and of ferrite-activated carbon composites were hydro-chemical with oxalic acid (C2H2O4) and co-precipitation with sodium hydroxide. The parameters evaluated for catalyst preparation were Ni/Fe molar ratios (1/1.5 and 1/2), calcination times and temperatures (2-4 h/600-900°C), and ferrite-activated carbon mass ratios in the case of composites (1/1, 1/2 and 1/3).  FINDINGS: Oxidation results showed that the ideal Ni/Fe molar ratio was 1/2, and the calcination time was 4 h at 600 and 900ᵒC for co-precipitation and hydro-chemical pathways of nickel ferrites, respectively. The catalyst that showed the greatest capacity for cyanide transformation was that obtained by the hydro-chemical pathway with oxalic acid, achieving efficiencies of 96.3% oxidation of cyanide ion. It was also determined that the largest impregnation of ferrite on the carbonaceous surface was 52.6% through the treatment with oxalic acid, with which the composite was obtained with the best catalytic properties of cyanide ion.  CONCLUSION: Nickel ferrite is able to oxidize cyanide ion to cyanate ion; being the ferrite-activated carbon combination, with which composite materials with catalytic properties of cyanide ion are obtained. Because of this, the materials studied could be applied in the detoxification of cyanurate solutions from metallurgical processes.\",\"PeriodicalId\":46495,\"journal\":{\"name\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/GJESM.2021.02.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2021.02.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

背景和目的:氰化物是金回收过程中常用的物质,因为它与贵金属形成络合物的亲和力很高,但处理和最终排列不当会导致严重的环境污染。在这种背景下,本研究的重点是制备用于在空气存在下催化氧化氰离子的镍铁氧体活性炭催化剂。方法:以镍(Ni(NO3)2·6H2O)和铁(Fe(NO3,3·9H2O)的水合盐为前驱体。铁氧体和铁氧体-活性炭复合材料的制备途径为草酸水化学和氢氧化钠共沉淀。催化剂制备的评估参数为Ni/Fe摩尔比(1/1.5和1/2)、煅烧时间和温度(2-4小时/600-900°C),以及复合材料中的铁氧体-活性炭质量比(1/1、1/2和1/3)。结果:氧化结果表明,理想的Ni/Fe摩尔比为1/2,在600和900下煅烧时间为4hᵒC分别用于镍铁氧体的共沉淀和水化学途径。表现出最大氰化物转化能力的催化剂是通过草酸的水化学途径获得的,氰化物离子的氧化效率为96.3%。通过草酸处理,铁氧体在碳质表面的最大浸渍率为52.6%,得到了对氰离子具有最佳催化性能的复合材料。结论:镍铁氧体能将氰离子氧化为氰酸根离子;作为铁氧体-活性炭的组合,可获得具有氰离子催化性能的复合材料。正因为如此,所研究的材料可以应用于冶金过程中氰尿酸盐溶液的解毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyanide ion oxidation by catalytic effect of nickel ferrites activated carbon composites
BACKGROUND AND OBJECTIVES: Cyanide is a commonly-used substance in the gold recovery processes due to its high affinity for forming complexes with the precious metal, but inadequate handling and its final arrangement can lead to severe environmental contamination. In this context, this research focuses on the preparation of nickel ferrite-activated carbon catalysts for catalytic oxidation of cyanide ion in the presence of air.  METHODS: Hydrated salts of nickel (Ni(NO3)2·6H2O) and iron (Fe(NO3)3·9H2O) were used as precursors. The preparation pathways of ferrite and of ferrite-activated carbon composites were hydro-chemical with oxalic acid (C2H2O4) and co-precipitation with sodium hydroxide. The parameters evaluated for catalyst preparation were Ni/Fe molar ratios (1/1.5 and 1/2), calcination times and temperatures (2-4 h/600-900°C), and ferrite-activated carbon mass ratios in the case of composites (1/1, 1/2 and 1/3).  FINDINGS: Oxidation results showed that the ideal Ni/Fe molar ratio was 1/2, and the calcination time was 4 h at 600 and 900ᵒC for co-precipitation and hydro-chemical pathways of nickel ferrites, respectively. The catalyst that showed the greatest capacity for cyanide transformation was that obtained by the hydro-chemical pathway with oxalic acid, achieving efficiencies of 96.3% oxidation of cyanide ion. It was also determined that the largest impregnation of ferrite on the carbonaceous surface was 52.6% through the treatment with oxalic acid, with which the composite was obtained with the best catalytic properties of cyanide ion.  CONCLUSION: Nickel ferrite is able to oxidize cyanide ion to cyanate ion; being the ferrite-activated carbon combination, with which composite materials with catalytic properties of cyanide ion are obtained. Because of this, the materials studied could be applied in the detoxification of cyanurate solutions from metallurgical processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
2.90%
发文量
11
审稿时长
8 weeks
期刊最新文献
Urban green space during the Coronavirus disease pandemic with regard to the socioeconomic characteristics Healthcare waste characteristics and management in regional hospital and private clinic Environmental effect of the Coronavirus-19 determinants and lockdown on carbon emissions Carbon footprint and cost analysis of a bicycle lane in a municipality Microplastic abundance and distribution in surface water and sediment collected from the coastal area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1