Gleb Glukhov, Ivan Derevitskii, Oksana Severiukhina, Klavdiya Olegovna Bochenina
{"title":"餐饮业COVID-19限制场景的动态推荐算法","authors":"Gleb Glukhov, Ivan Derevitskii, Oksana Severiukhina, Klavdiya Olegovna Bochenina","doi":"10.1108/jhtt-09-2021-0278","DOIUrl":null,"url":null,"abstract":"\nPurpose\nUsing the data set about the restaurants from different countries and their customer's feedback, the purpose of this paper is to address the following issues: in the restaurant industry, how have user behavior and preferences changed during the COVID-19 restrictions period, how did these changes influence the performance of recommendation algorithms and which methods can be proposed to improve the quality of restaurant recommendations in a lockdown scenario.\n\n\nDesign/methodology/approach\nTo assess changes in user behavior and preferences, quantitative and qualitative data analysis was performed to assess the changes in user behavior and preferences. The authors compared the situation before and during the COVID-19 restrictions period. To evaluate the performance of restaurant recommendation systems in a non-stationary setting, the authors tested state-of-the-art collaborative filtering algorithms. This study proposes and investigates a filtering-based approach to improve the quality of recommendation algorithms for a lockdown scenario.\n\n\nFindings\nThis study revealed that during the COVID-19 restrictions period, the average rating values and the number of reviews have changed. The experimental study confirmed that: the performance of all state-of-the-art recommender systems for the restaurant industry has significantly degraded during the COVID-19 restrictions period; and the accuracy and the stability of restaurant recommendations in non-stationary settings may be improved using the sliding window and post-filtering methods.\n\n\nPractical implications\nThe authors propose two novel methods: the sliding window and closed restaurants post-filtering method based on the CatBoost classification model. These methods can be applied to classical collaborative recommender algorithms and increase the value of metrics under non-stationary conditions. These methods can be helpful for developers of recommender systems and massive aggregators of restaurants and hotels. Thus, it benefits both the app end-user and business owners because users honestly rate restaurants when they receive good recommendations and do not downgrade because of external factors.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this paper provides the first extensive and multifaceted experimental study of the impact of COVID-19 restrictions on the effectiveness of restaurant recommendation systems in different countries. Two novel methods to tackle restaurant recommendations' performance degradation are proposed and validated.\n","PeriodicalId":51611,"journal":{"name":"Journal of Hospitality and Tourism Technology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic recommendation algorithms for a COVID-19 restrictions scenario in the restaurant industry\",\"authors\":\"Gleb Glukhov, Ivan Derevitskii, Oksana Severiukhina, Klavdiya Olegovna Bochenina\",\"doi\":\"10.1108/jhtt-09-2021-0278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nUsing the data set about the restaurants from different countries and their customer's feedback, the purpose of this paper is to address the following issues: in the restaurant industry, how have user behavior and preferences changed during the COVID-19 restrictions period, how did these changes influence the performance of recommendation algorithms and which methods can be proposed to improve the quality of restaurant recommendations in a lockdown scenario.\\n\\n\\nDesign/methodology/approach\\nTo assess changes in user behavior and preferences, quantitative and qualitative data analysis was performed to assess the changes in user behavior and preferences. The authors compared the situation before and during the COVID-19 restrictions period. To evaluate the performance of restaurant recommendation systems in a non-stationary setting, the authors tested state-of-the-art collaborative filtering algorithms. This study proposes and investigates a filtering-based approach to improve the quality of recommendation algorithms for a lockdown scenario.\\n\\n\\nFindings\\nThis study revealed that during the COVID-19 restrictions period, the average rating values and the number of reviews have changed. The experimental study confirmed that: the performance of all state-of-the-art recommender systems for the restaurant industry has significantly degraded during the COVID-19 restrictions period; and the accuracy and the stability of restaurant recommendations in non-stationary settings may be improved using the sliding window and post-filtering methods.\\n\\n\\nPractical implications\\nThe authors propose two novel methods: the sliding window and closed restaurants post-filtering method based on the CatBoost classification model. These methods can be applied to classical collaborative recommender algorithms and increase the value of metrics under non-stationary conditions. These methods can be helpful for developers of recommender systems and massive aggregators of restaurants and hotels. Thus, it benefits both the app end-user and business owners because users honestly rate restaurants when they receive good recommendations and do not downgrade because of external factors.\\n\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, this paper provides the first extensive and multifaceted experimental study of the impact of COVID-19 restrictions on the effectiveness of restaurant recommendation systems in different countries. Two novel methods to tackle restaurant recommendations' performance degradation are proposed and validated.\\n\",\"PeriodicalId\":51611,\"journal\":{\"name\":\"Journal of Hospitality and Tourism Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hospitality and Tourism Technology\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/jhtt-09-2021-0278\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hospitality and Tourism Technology","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jhtt-09-2021-0278","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
Dynamic recommendation algorithms for a COVID-19 restrictions scenario in the restaurant industry
Purpose
Using the data set about the restaurants from different countries and their customer's feedback, the purpose of this paper is to address the following issues: in the restaurant industry, how have user behavior and preferences changed during the COVID-19 restrictions period, how did these changes influence the performance of recommendation algorithms and which methods can be proposed to improve the quality of restaurant recommendations in a lockdown scenario.
Design/methodology/approach
To assess changes in user behavior and preferences, quantitative and qualitative data analysis was performed to assess the changes in user behavior and preferences. The authors compared the situation before and during the COVID-19 restrictions period. To evaluate the performance of restaurant recommendation systems in a non-stationary setting, the authors tested state-of-the-art collaborative filtering algorithms. This study proposes and investigates a filtering-based approach to improve the quality of recommendation algorithms for a lockdown scenario.
Findings
This study revealed that during the COVID-19 restrictions period, the average rating values and the number of reviews have changed. The experimental study confirmed that: the performance of all state-of-the-art recommender systems for the restaurant industry has significantly degraded during the COVID-19 restrictions period; and the accuracy and the stability of restaurant recommendations in non-stationary settings may be improved using the sliding window and post-filtering methods.
Practical implications
The authors propose two novel methods: the sliding window and closed restaurants post-filtering method based on the CatBoost classification model. These methods can be applied to classical collaborative recommender algorithms and increase the value of metrics under non-stationary conditions. These methods can be helpful for developers of recommender systems and massive aggregators of restaurants and hotels. Thus, it benefits both the app end-user and business owners because users honestly rate restaurants when they receive good recommendations and do not downgrade because of external factors.
Originality/value
To the best of the authors’ knowledge, this paper provides the first extensive and multifaceted experimental study of the impact of COVID-19 restrictions on the effectiveness of restaurant recommendation systems in different countries. Two novel methods to tackle restaurant recommendations' performance degradation are proposed and validated.
期刊介绍:
The Journal of Hospitality and Tourism Technology is the only journal dedicated solely for research in technology and e-business in tourism and hospitality. It is a bridge between academia and industry through the intellectual exchange of ideas, trends and paradigmatic changes in the fields of hospitality, IT and e-business. It covers: -E-Marketplaces, electronic distribution channels, or e-Intermediaries -Internet or e-commerce business models -Self service technologies -E-Procurement -Social dynamics of e-communication -Relationship Development and Retention -E-governance -Security of transactions -Mobile/Wireless technologies in commerce -IT control and preparation for disaster -Virtual reality applications -Word of Mouth. -Cross-Cultural differences in IT use -GPS and Location-based services -Biometric applications -Business intelligence visualization -Radio Frequency Identification applications -Service-Oriented Architecture of business systems -Technology in New Product Development