利用探索性搜索中的查询词邻近度提高文档相关性

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Retrieval Research Pub Date : 2023-06-27 DOI:10.4018/ijirr.325072
Vikram Singh
{"title":"利用探索性搜索中的查询词邻近度提高文档相关性","authors":"Vikram Singh","doi":"10.4018/ijirr.325072","DOIUrl":null,"url":null,"abstract":"In the information retrieval system, relevance manifestation is pivotal and regularly based on document-term statistics, i.e., term frequency (tf), inverse document frequency (idf), etc. Query term proximity (QTP) within matched documents is mostly under-explored. In this article, a novel information retrieval framework is proposed to promote the documents among all relevant retrieved ones. The relevance estimation is a weighted combination of document statistics and query term statistics, and term-term proximity is simply aggregates of diverse user preferences aspects in query formation, thus adapted into the framework with conventional relevance measures. Intuitively, QTP is exploited to promote the documents for balanced exploitation-exploration, and eventually navigate a search towards goals. The evaluation asserts the usability of QTP measures to balance several seeking tradeoffs, e.g., relevance, novelty, result diversification (coverage, topicality), and overall retrieval. The assessment of user search trails indicates significant growth in a learning outcome (due to novelty).","PeriodicalId":43345,"journal":{"name":"International Journal of Information Retrieval Research","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting Document Relevance Using Query Term Proximity for Exploratory Search\",\"authors\":\"Vikram Singh\",\"doi\":\"10.4018/ijirr.325072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the information retrieval system, relevance manifestation is pivotal and regularly based on document-term statistics, i.e., term frequency (tf), inverse document frequency (idf), etc. Query term proximity (QTP) within matched documents is mostly under-explored. In this article, a novel information retrieval framework is proposed to promote the documents among all relevant retrieved ones. The relevance estimation is a weighted combination of document statistics and query term statistics, and term-term proximity is simply aggregates of diverse user preferences aspects in query formation, thus adapted into the framework with conventional relevance measures. Intuitively, QTP is exploited to promote the documents for balanced exploitation-exploration, and eventually navigate a search towards goals. The evaluation asserts the usability of QTP measures to balance several seeking tradeoffs, e.g., relevance, novelty, result diversification (coverage, topicality), and overall retrieval. The assessment of user search trails indicates significant growth in a learning outcome (due to novelty).\",\"PeriodicalId\":43345,\"journal\":{\"name\":\"International Journal of Information Retrieval Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Retrieval Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijirr.325072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Retrieval Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijirr.325072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在信息检索系统中,相关性的表现是至关重要的,并且是有规律地基于文献术语统计的,即词频(term frequency, tf)、逆文献频率(inverse document frequency, idf)等。匹配文档中的查询词接近性(QTP)还没有得到充分的研究。本文提出了一种新的信息检索框架,用于在所有相关的检索文档中促进文档的检索。相关性估计是文档统计和查询词统计的加权组合,术语接近度是查询信息中不同用户偏好方面的简单聚合,因此适用于具有常规相关性度量的框架。直观地说,QTP被用来促进文档的平衡利用和探索,并最终引导搜索实现目标。评估断言QTP度量的可用性,以平衡几个寻求权衡,例如,相关性、新颖性、结果多样化(覆盖范围、话题性)和整体检索。对用户搜索轨迹的评估表明学习结果的显著增长(由于新颖性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promoting Document Relevance Using Query Term Proximity for Exploratory Search
In the information retrieval system, relevance manifestation is pivotal and regularly based on document-term statistics, i.e., term frequency (tf), inverse document frequency (idf), etc. Query term proximity (QTP) within matched documents is mostly under-explored. In this article, a novel information retrieval framework is proposed to promote the documents among all relevant retrieved ones. The relevance estimation is a weighted combination of document statistics and query term statistics, and term-term proximity is simply aggregates of diverse user preferences aspects in query formation, thus adapted into the framework with conventional relevance measures. Intuitively, QTP is exploited to promote the documents for balanced exploitation-exploration, and eventually navigate a search towards goals. The evaluation asserts the usability of QTP measures to balance several seeking tradeoffs, e.g., relevance, novelty, result diversification (coverage, topicality), and overall retrieval. The assessment of user search trails indicates significant growth in a learning outcome (due to novelty).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Retrieval Research
International Journal of Information Retrieval Research COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
0.00%
发文量
64
期刊最新文献
Effective Information Retrieval Framework for Twitter Data Analytics A New Scalable Deep Learning Model of Pattern Recognition for Medical Diagnosis Using Model Aggregation and Model Selection Promoting Document Relevance Using Query Term Proximity for Exploratory Search Clustering of Relevant Documents Based on Findability Effort in Information Retrieval Template based Question Answering System Over Semantic Web
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1