C. Aouadhi, Mayasar I. Al-zaban, Albandary Nasser Alsaloom, A. Maaroufi
{"title":"综述:高压处理与其他处理相结合对耐高温芽孢杆菌孢子的灭活","authors":"C. Aouadhi, Mayasar I. Al-zaban, Albandary Nasser Alsaloom, A. Maaroufi","doi":"10.1080/08957959.2022.2079978","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Bacillus sporothermoduras spores are known to be very resistant to ultra heat treatment. It is able to germinate and growth in the final product causing the non-sterility of UHT milk. Indeed, the currently used methods for the preservation of dairy products are often not sufficient for the destruction of all the spores potentially present. Faced with the constraint of altering the organoleptic and nutritional quality of milk by increasing the temperature and/or the duration of the treatment, in order to inactivate the highly heat-resistant spores, it has therefore become essential to develop other processes more effective in completely inactivating these spores without modifying the organoleptic characteristics of the product. The use of non-thermal methods offers an interesting alternative to conventional thermal treatments. They inactivate microorganisms, in particular bacterial spores, while preserving the organoleptic and nutritional qualities of the treated product. As a result, they have received special attention in recent years. Consequently, this review aimed to summarize the related investigation on the inactivation of heat-resistant spores of Bacillus sporothermodurans by non-thermal methods.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"236 - 244"},"PeriodicalIF":1.2000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review: inactivation of very heat-resistant spores of Bacilus sporothermodurans by high pressure treatment combined with others treatments\",\"authors\":\"C. Aouadhi, Mayasar I. Al-zaban, Albandary Nasser Alsaloom, A. Maaroufi\",\"doi\":\"10.1080/08957959.2022.2079978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n Bacillus sporothermoduras spores are known to be very resistant to ultra heat treatment. It is able to germinate and growth in the final product causing the non-sterility of UHT milk. Indeed, the currently used methods for the preservation of dairy products are often not sufficient for the destruction of all the spores potentially present. Faced with the constraint of altering the organoleptic and nutritional quality of milk by increasing the temperature and/or the duration of the treatment, in order to inactivate the highly heat-resistant spores, it has therefore become essential to develop other processes more effective in completely inactivating these spores without modifying the organoleptic characteristics of the product. The use of non-thermal methods offers an interesting alternative to conventional thermal treatments. They inactivate microorganisms, in particular bacterial spores, while preserving the organoleptic and nutritional qualities of the treated product. As a result, they have received special attention in recent years. Consequently, this review aimed to summarize the related investigation on the inactivation of heat-resistant spores of Bacillus sporothermodurans by non-thermal methods.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"42 1\",\"pages\":\"236 - 244\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2022.2079978\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2022.2079978","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Review: inactivation of very heat-resistant spores of Bacilus sporothermodurans by high pressure treatment combined with others treatments
ABSTRACT
Bacillus sporothermoduras spores are known to be very resistant to ultra heat treatment. It is able to germinate and growth in the final product causing the non-sterility of UHT milk. Indeed, the currently used methods for the preservation of dairy products are often not sufficient for the destruction of all the spores potentially present. Faced with the constraint of altering the organoleptic and nutritional quality of milk by increasing the temperature and/or the duration of the treatment, in order to inactivate the highly heat-resistant spores, it has therefore become essential to develop other processes more effective in completely inactivating these spores without modifying the organoleptic characteristics of the product. The use of non-thermal methods offers an interesting alternative to conventional thermal treatments. They inactivate microorganisms, in particular bacterial spores, while preserving the organoleptic and nutritional qualities of the treated product. As a result, they have received special attention in recent years. Consequently, this review aimed to summarize the related investigation on the inactivation of heat-resistant spores of Bacillus sporothermodurans by non-thermal methods.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.