{"title":"具有热辐射、多孔介质和可变热通量的非稳态拉伸薄板引起的磁流体动力学流动","authors":"A. Megahed, N. Ghoneim, M. G. Reddy, M. El-Khatib","doi":"10.1155/2021/6686883","DOIUrl":null,"url":null,"abstract":"A shooting method has been introduced for determining the numerical solution of the ordinary differential equations which describe the Newtonian magnetohydrodynamic laminar fluid flow due to an unsteady stretching sheet together with the presence of thermal radiation and variable heat flux. The variable viscosity and variable conductivity are taken into consideration. Absence of magnetic field in some studies restricts the development of the energy-efficient heat transfer mechanism as is desired in numerous applications. The present study encompasses parameters such as unsteadiness parameter, porous parameter, viscosity parameter, magnetic number, radiation parameter, and conductivity parameter. It has been consummated that the proposed model is superior to other existing models for the industrial fluid.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Magnetohydrodynamic Fluid Flow due to an Unsteady Stretching Sheet with Thermal Radiation, Porous Medium, and Variable Heat Flux\",\"authors\":\"A. Megahed, N. Ghoneim, M. G. Reddy, M. El-Khatib\",\"doi\":\"10.1155/2021/6686883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A shooting method has been introduced for determining the numerical solution of the ordinary differential equations which describe the Newtonian magnetohydrodynamic laminar fluid flow due to an unsteady stretching sheet together with the presence of thermal radiation and variable heat flux. The variable viscosity and variable conductivity are taken into consideration. Absence of magnetic field in some studies restricts the development of the energy-efficient heat transfer mechanism as is desired in numerous applications. The present study encompasses parameters such as unsteadiness parameter, porous parameter, viscosity parameter, magnetic number, radiation parameter, and conductivity parameter. It has been consummated that the proposed model is superior to other existing models for the industrial fluid.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6686883\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6686883","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Magnetohydrodynamic Fluid Flow due to an Unsteady Stretching Sheet with Thermal Radiation, Porous Medium, and Variable Heat Flux
A shooting method has been introduced for determining the numerical solution of the ordinary differential equations which describe the Newtonian magnetohydrodynamic laminar fluid flow due to an unsteady stretching sheet together with the presence of thermal radiation and variable heat flux. The variable viscosity and variable conductivity are taken into consideration. Absence of magnetic field in some studies restricts the development of the energy-efficient heat transfer mechanism as is desired in numerous applications. The present study encompasses parameters such as unsteadiness parameter, porous parameter, viscosity parameter, magnetic number, radiation parameter, and conductivity parameter. It has been consummated that the proposed model is superior to other existing models for the industrial fluid.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.