基于数据挖掘方法的全盘太阳耀斑预测模型

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Advances in Astronomy Pub Date : 2019-08-01 DOI:10.1155/2019/5190353
Rong Li, Yong Du
{"title":"基于数据挖掘方法的全盘太阳耀斑预测模型","authors":"Rong Li, Yong Du","doi":"10.1155/2019/5190353","DOIUrl":null,"url":null,"abstract":"Solar flare is one of the violent solar eruptive phenomena; many solar flare forecasting models are built based on the properties of active regions. However, most of these models only focus on active regions within 30° of solar disk center because of the projection effect. Using cost sensitive decision tree algorithm, we build two solar flare forecasting models from the active regions within 30° of solar disk center and outside 30° of solar disk center, respectively. The performances of these two models are compared and analyzed. Merging these two models into a single one, we obtain a full-disk solar flare forecasting model.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/5190353","citationCount":"0","resultStr":"{\"title\":\"Full-Disk Solar Flare Forecasting Model Based on Data Mining Method\",\"authors\":\"Rong Li, Yong Du\",\"doi\":\"10.1155/2019/5190353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar flare is one of the violent solar eruptive phenomena; many solar flare forecasting models are built based on the properties of active regions. However, most of these models only focus on active regions within 30° of solar disk center because of the projection effect. Using cost sensitive decision tree algorithm, we build two solar flare forecasting models from the active regions within 30° of solar disk center and outside 30° of solar disk center, respectively. The performances of these two models are compared and analyzed. Merging these two models into a single one, we obtain a full-disk solar flare forecasting model.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/5190353\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/5190353\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2019/5190353","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳耀斑是一种剧烈的太阳爆发现象;许多太阳耀斑预报模型都是基于活动区的性质建立的。然而,由于投影效应的影响,这些模式大多只关注太阳盘中心30°以内的活动区域。利用成本敏感决策树算法,分别从太阳中心30°以内和30°以外的活动区建立了两个太阳耀斑预测模型。对两种模型的性能进行了比较和分析。将这两个模型合并为一个模型,得到了一个全盘太阳耀斑预报模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full-Disk Solar Flare Forecasting Model Based on Data Mining Method
Solar flare is one of the violent solar eruptive phenomena; many solar flare forecasting models are built based on the properties of active regions. However, most of these models only focus on active regions within 30° of solar disk center because of the projection effect. Using cost sensitive decision tree algorithm, we build two solar flare forecasting models from the active regions within 30° of solar disk center and outside 30° of solar disk center, respectively. The performances of these two models are compared and analyzed. Merging these two models into a single one, we obtain a full-disk solar flare forecasting model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
期刊最新文献
A Study of the Early Cosmic Dynamics in a Multifield Model of Inflation and Curvature Perturbations Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models Measuring Track-Related Pointing Errors on the Nanshan Radio Telescope with an Optical Pointing Telescope Tracking and Disturbance Suppression of the Radio Telescope Servo System Based on the Equivalent-Input-Disturbance Approach Dark Energy from Cosmological Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1