具有不同钾和钙电流的犬和人心室组织的数学模型中的螺旋和涡旋波动力学

Q2 Physics and Astronomy Physics Open Pub Date : 2022-12-01 DOI:10.1016/j.physo.2022.100120
K.V. Rajany , Alok Ranjan Nayak , Rupamanjari Majumder , Rahul Pandit
{"title":"具有不同钾和钙电流的犬和人心室组织的数学模型中的螺旋和涡旋波动力学","authors":"K.V. Rajany ,&nbsp;Alok Ranjan Nayak ,&nbsp;Rupamanjari Majumder ,&nbsp;Rahul Pandit","doi":"10.1016/j.physo.2022.100120","DOIUrl":null,"url":null,"abstract":"<div><p>We conduct a systematic, direct-numerical-simulation (DNS) study, in mathematical models for ventricular tissue, of the dependence of spiral- and scroll-wave dynamics on <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span>, the maximal conductance of the delayed rectifier Potassium current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span>) channel, and the parameter <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span>, which determines the magnitude and shape of the current <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span> for the L-type calcium-current channel, in both square and anatomically realistic, whole-ventricle simulation domains. We study canine and human models. In the former, we use a canine-ventricular geometry, with fiber-orientation details, obtained from diffusion-tensor-magnetic-resonance-imaging (DTMRI) data; and we employ the physiologically realistic Hund-Rudy-Dynamic (HRD) model for a canine ventricular myocyte. To focus on the dependence of spiral- and scroll-wave dynamics on <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span>, we restrict ourselves to an HRD-model parameter regime, which does not produce spiral- and scroll-wave instabilities because of other, well-studied causes like a very sharp action-potential-duration-restitution (APDR) curve or early after depolarizations (EADs) at the single-cell level. We find that spiral- or scroll-wave dynamics are affected predominantly by a simultaneous change in <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> from their original values in the model, rather than by a change in any one of these currents; other currents do not have such a large effect on these wave dynamics in this parameter regime of the HRD model. In particular, we examine spiral-wave dynamics for ten different values of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and ten different values of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span> in our 2D DNSs. For our 3D DNSs in an anatomically realistic domain, we chose 16 parameter sets. In the parameter regime we begin with, the system displays broken spiral or scroll states with S1–S2 initial conditions (see below). We show that, by simultaneously increasing <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and reducing <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span>, we can get to a parameter regime in which the system displays single, stable rotating spirals or scroll waves. We obtain stability diagrams (or phase diagrams) in the <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></mrow></math></span> plane; and we find that these diagrams are significantly different in our 2D and 3D studies. In the 3D case, the geometry of the domain itself supports the confinement of the scroll waves and makes them more stable compared to their spiral-wave counterparts in our flat, 2D simulation domain. Thus, a combination of functional and geometrical mechanisms produce different dynamics for 3D scroll waves and their 2D spiral-wave counterparts. In particular, the former do not break easily because, in an anatomically realistic ventricular geometry, they are not easily absorbed at boundaries, nor do they break near boundaries. We have also carried out a comparison of our HRD results with their counterparts for the human-ventricular TP06 model; and we have found important differences between wave dynamics in these two models. The region in parameter space, where we obtain broken spiral or scroll waves in the HRD model is the region of stable rotating waves in the TP06 model; the default parameter values produce broken waves in the HRD model, but stable scrolls in the TP06 model. In both these models, to make a transition, (most simply, from broken-wave to stable-scroll states) we must simultaneously increase <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and decrease <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span>; a modification of only one of these currents is not enough to effect this transition. Furthermore, the converse, i.e., an increase in <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span> along with a decrease in <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> does not yield any interesting dynamical transitions in the HRD model, for, in this range of currents, this model does not sustain spiral or scroll waves or broken waves.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"13 ","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032622000205/pdfft?md5=a28d5387c9558d83607f49cae9da304b&pid=1-s2.0-S2666032622000205-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Spiral- and scroll-wave dynamics in mathematical models for canine and human ventricular tissue with varying Potassium and Calcium currents\",\"authors\":\"K.V. Rajany ,&nbsp;Alok Ranjan Nayak ,&nbsp;Rupamanjari Majumder ,&nbsp;Rahul Pandit\",\"doi\":\"10.1016/j.physo.2022.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We conduct a systematic, direct-numerical-simulation (DNS) study, in mathematical models for ventricular tissue, of the dependence of spiral- and scroll-wave dynamics on <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span>, the maximal conductance of the delayed rectifier Potassium current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span>) channel, and the parameter <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span>, which determines the magnitude and shape of the current <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span> for the L-type calcium-current channel, in both square and anatomically realistic, whole-ventricle simulation domains. We study canine and human models. In the former, we use a canine-ventricular geometry, with fiber-orientation details, obtained from diffusion-tensor-magnetic-resonance-imaging (DTMRI) data; and we employ the physiologically realistic Hund-Rudy-Dynamic (HRD) model for a canine ventricular myocyte. To focus on the dependence of spiral- and scroll-wave dynamics on <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span>, we restrict ourselves to an HRD-model parameter regime, which does not produce spiral- and scroll-wave instabilities because of other, well-studied causes like a very sharp action-potential-duration-restitution (APDR) curve or early after depolarizations (EADs) at the single-cell level. We find that spiral- or scroll-wave dynamics are affected predominantly by a simultaneous change in <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> from their original values in the model, rather than by a change in any one of these currents; other currents do not have such a large effect on these wave dynamics in this parameter regime of the HRD model. In particular, we examine spiral-wave dynamics for ten different values of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and ten different values of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span> in our 2D DNSs. For our 3D DNSs in an anatomically realistic domain, we chose 16 parameter sets. In the parameter regime we begin with, the system displays broken spiral or scroll states with S1–S2 initial conditions (see below). We show that, by simultaneously increasing <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and reducing <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></math></span>, we can get to a parameter regime in which the system displays single, stable rotating spirals or scroll waves. We obtain stability diagrams (or phase diagrams) in the <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>o</mi></mrow></msub></mrow></math></span> plane; and we find that these diagrams are significantly different in our 2D and 3D studies. In the 3D case, the geometry of the domain itself supports the confinement of the scroll waves and makes them more stable compared to their spiral-wave counterparts in our flat, 2D simulation domain. Thus, a combination of functional and geometrical mechanisms produce different dynamics for 3D scroll waves and their 2D spiral-wave counterparts. In particular, the former do not break easily because, in an anatomically realistic ventricular geometry, they are not easily absorbed at boundaries, nor do they break near boundaries. We have also carried out a comparison of our HRD results with their counterparts for the human-ventricular TP06 model; and we have found important differences between wave dynamics in these two models. The region in parameter space, where we obtain broken spiral or scroll waves in the HRD model is the region of stable rotating waves in the TP06 model; the default parameter values produce broken waves in the HRD model, but stable scrolls in the TP06 model. In both these models, to make a transition, (most simply, from broken-wave to stable-scroll states) we must simultaneously increase <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> and decrease <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span>; a modification of only one of these currents is not enough to effect this transition. Furthermore, the converse, i.e., an increase in <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>C</mi><mi>a</mi><mi>L</mi></mrow></msub></math></span> along with a decrease in <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi><mi>r</mi></mrow></msub></math></span> does not yield any interesting dynamical transitions in the HRD model, for, in this range of currents, this model does not sustain spiral or scroll waves or broken waves.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"13 \",\"pages\":\"Article 100120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666032622000205/pdfft?md5=a28d5387c9558d83607f49cae9da304b&pid=1-s2.0-S2666032622000205-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032622000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032622000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

在心室组织的数学模型中,我们进行了一项系统的、直接数值模拟(DNS)研究,研究了螺旋波和螺旋波动力学对GKr、延迟整流器钾电流(IKr)通道的最大电导以及参数γCao的依赖性,γCao决定了l型钙电流通道的电流ICaL的大小和形状,在正方形和解剖学上真实的全心室模拟域。我们研究犬类和人类模型。在前者中,我们使用从扩散张量磁共振成像(DTMRI)数据中获得的犬心室几何结构和纤维定向细节;我们对犬心室肌细胞采用了生理上真实的洪-鲁迪-动态(HRD)模型。为了关注螺旋波和涡旋波动力学对GKr和γCao的依赖性,我们将自己限制在一个hrd模型参数体系中,该体系不会产生螺旋波和涡旋波的不稳定性,因为其他已经得到充分研究的原因,如非常明显的动作电位-持续时间-恢复(APDR)曲线或单细胞水平的早期去极化(EADs)。我们发现螺旋波或涡旋波动力学主要受ICaL和IKr从模型中原始值同时变化的影响,而不是受这些电流中的任何一个变化的影响;在HRD模型的这一参数范围内,其他洋流对这些波浪动力学没有如此大的影响。特别是,我们在二维dns中研究了十种不同的GKr值和十种不同的γ - cao值的螺旋波动力学。对于我们的三维dns在解剖学逼真的领域,我们选择了16个参数集。在我们开始的参数区,系统在S1-S2初始条件下显示破碎的螺旋或滚动状态(见下文)。我们发现,通过同时增加GKr和降低γ - cao,我们可以得到一个系统显示单一的、稳定的旋转螺旋或涡旋波的参数区。我们得到了GKr−γ - cao平面的稳定性图(或相图);我们发现这些图表在我们的2D和3D研究中有很大的不同。在3D情况下,区域本身的几何结构支持涡旋波的约束,使它们比平面二维模拟区域中的螺旋波更稳定。因此,功能和几何机制的结合对三维涡旋波和二维螺旋波产生不同的动力学。特别是,前者不易断裂,因为在解剖学上真实的心室几何结构中,它们不易在边界处被吸收,也不易在边界附近断裂。我们还将我们的HRD结果与人类心室TP06模型的结果进行了比较;我们在这两个模型中发现了波浪动力学的重要区别。在参数空间中,HRD模型中得到破碎螺旋波或涡旋波的区域是TP06模型中稳定旋转波的区域;默认参数值在HRD模型中产生破碎的波浪,但在TP06模型中产生稳定的卷轴。在这两个模型中,要实现过渡(最简单地说,从破碎波到稳定滚动状态),我们必须同时增加IKr并减少ICaL;仅仅改变其中一种电流是不足以影响这种转变的。此外,相反,即ICaL的增加与IKr的减少不会在HRD模型中产生任何有趣的动力学转变,因为在该电流范围内,该模型不支持螺旋波或涡旋波或破碎波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spiral- and scroll-wave dynamics in mathematical models for canine and human ventricular tissue with varying Potassium and Calcium currents

We conduct a systematic, direct-numerical-simulation (DNS) study, in mathematical models for ventricular tissue, of the dependence of spiral- and scroll-wave dynamics on GKr, the maximal conductance of the delayed rectifier Potassium current (IKr) channel, and the parameter γCao, which determines the magnitude and shape of the current ICaL for the L-type calcium-current channel, in both square and anatomically realistic, whole-ventricle simulation domains. We study canine and human models. In the former, we use a canine-ventricular geometry, with fiber-orientation details, obtained from diffusion-tensor-magnetic-resonance-imaging (DTMRI) data; and we employ the physiologically realistic Hund-Rudy-Dynamic (HRD) model for a canine ventricular myocyte. To focus on the dependence of spiral- and scroll-wave dynamics on GKr and γCao, we restrict ourselves to an HRD-model parameter regime, which does not produce spiral- and scroll-wave instabilities because of other, well-studied causes like a very sharp action-potential-duration-restitution (APDR) curve or early after depolarizations (EADs) at the single-cell level. We find that spiral- or scroll-wave dynamics are affected predominantly by a simultaneous change in ICaL and IKr from their original values in the model, rather than by a change in any one of these currents; other currents do not have such a large effect on these wave dynamics in this parameter regime of the HRD model. In particular, we examine spiral-wave dynamics for ten different values of GKr and ten different values of γCao in our 2D DNSs. For our 3D DNSs in an anatomically realistic domain, we chose 16 parameter sets. In the parameter regime we begin with, the system displays broken spiral or scroll states with S1–S2 initial conditions (see below). We show that, by simultaneously increasing GKr and reducing γCao, we can get to a parameter regime in which the system displays single, stable rotating spirals or scroll waves. We obtain stability diagrams (or phase diagrams) in the GKrγCao plane; and we find that these diagrams are significantly different in our 2D and 3D studies. In the 3D case, the geometry of the domain itself supports the confinement of the scroll waves and makes them more stable compared to their spiral-wave counterparts in our flat, 2D simulation domain. Thus, a combination of functional and geometrical mechanisms produce different dynamics for 3D scroll waves and their 2D spiral-wave counterparts. In particular, the former do not break easily because, in an anatomically realistic ventricular geometry, they are not easily absorbed at boundaries, nor do they break near boundaries. We have also carried out a comparison of our HRD results with their counterparts for the human-ventricular TP06 model; and we have found important differences between wave dynamics in these two models. The region in parameter space, where we obtain broken spiral or scroll waves in the HRD model is the region of stable rotating waves in the TP06 model; the default parameter values produce broken waves in the HRD model, but stable scrolls in the TP06 model. In both these models, to make a transition, (most simply, from broken-wave to stable-scroll states) we must simultaneously increase IKr and decrease ICaL; a modification of only one of these currents is not enough to effect this transition. Furthermore, the converse, i.e., an increase in ICaL along with a decrease in IKr does not yield any interesting dynamical transitions in the HRD model, for, in this range of currents, this model does not sustain spiral or scroll waves or broken waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
期刊最新文献
Bifurcation and multi-stability analysis of microwave engineering systems: Insights from the Burger–Fisher equation New definitions of the effective nuclear charge and its application to estimate the matrix element ⟨n,l|rβ|n′,l′⟩ Influence of Nd3+ on structural, electrical and magnetic properties of Ni-Cd nanoferrites Diffusion across a concentration step: Strongly nonmonotonic evolution into thermodynamic equilibrium Characterizing stochastic solitons behavior in (3+1)-dimensional Schrödinger equation with Cubic–Quintic nonlinearity using improved modified extended tanh-function scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1