基于多智能体深度强化学习的动态自改进坡道计量算法

{"title":"基于多智能体深度强化学习的动态自改进坡道计量算法","authors":"","doi":"10.1080/19427867.2023.2231638","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.</p></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic self-improving ramp metering algorithm based on multi-agent deep reinforcement learning\",\"authors\":\"\",\"doi\":\"10.1080/19427867.2023.2231638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.</p></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786723002217\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002217","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新型匝道计量算法,该算法结合了多代理深度强化学习(DRL)技术,并利用了环路探测器的监测数据。我们提出的方法采用了多代理 DRL 框架,为每个匝道计量表实时生成优化的匝道计量时间表,从而以较少的投资提高了城市高速公路的运营效率。为了简化算法的实施和训练,我们开发了一个基于 SUMO 微观交通模拟器的仿真平台。我们进行了一系列仿真实验,包括具有不同交通需求曲线的局部和协调匝道计量场景。仿真结果表明,考虑到瓶颈处的主流速度和匝道上的排队长度等综合评价指标,所提出的基于 DRL 的算法优于现有的匝道计量方法。此外,该方法还表现出稳健性、可扩展性以及在实施过程中通过在线学习进一步改进的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dynamic self-improving ramp metering algorithm based on multi-agent deep reinforcement learning

We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
期刊最新文献
Impact assessment of professional drivers’ speed compliance and speed adaptation with posted speed limits in different driving environments and driving conditions Determination of the optimal connected and automated vehicles platoon size based on the merging success rate Crossing conflict models for urban un-signalized T-intersections in India Vehicle detection in diverse traffic using an ensemble convolutional neural backbone via feature concatenation What causes severe truck crashes on the flat and mountainous expressways? A comparative study in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1