不同条件下梯级溢洪道两相流数值研究

Q4 Chemical Engineering Applied and Computational Mechanics Pub Date : 2021-06-01 DOI:10.22059/JCAMECH.2021.314069.573
E. Parhizgar, Z. Namazian
{"title":"不同条件下梯级溢洪道两相流数值研究","authors":"E. Parhizgar, Z. Namazian","doi":"10.22059/JCAMECH.2021.314069.573","DOIUrl":null,"url":null,"abstract":"In this study, two-phase flow over a three-dimensional stepped spillway was numerically investigated using a finite volume code in ansys-Fluent commercial software. The numerical results were validated against experimental data. Then, the effects of several parameters were evaluated on the structure of the flow over the concerned spillway. Based on the natural roughness, several roughness heights of 0.0001, 0.0005, and 0.001 m were considered on the spillway surface to investigate the flow structure. In the next step, several surfaces with different contact angles, including 80, 120, and 160°, were used. Finally, a passive control method, including simultaneous blowing and suction with different configurations, was applied to the steps of the spillway. The results revealed that a change in the surface roughness or contact angle and applying the control method could change the flow regime from skipping to nappe. Also, variations in the speed of falling water and energy loss were attributed to changes in the surface roughness and contact angle and implementation of the proposed control method.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"332-349"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigations of Two-Phase Flow on a Stepped Spillway under Various Conditions\",\"authors\":\"E. Parhizgar, Z. Namazian\",\"doi\":\"10.22059/JCAMECH.2021.314069.573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, two-phase flow over a three-dimensional stepped spillway was numerically investigated using a finite volume code in ansys-Fluent commercial software. The numerical results were validated against experimental data. Then, the effects of several parameters were evaluated on the structure of the flow over the concerned spillway. Based on the natural roughness, several roughness heights of 0.0001, 0.0005, and 0.001 m were considered on the spillway surface to investigate the flow structure. In the next step, several surfaces with different contact angles, including 80, 120, and 160°, were used. Finally, a passive control method, including simultaneous blowing and suction with different configurations, was applied to the steps of the spillway. The results revealed that a change in the surface roughness or contact angle and applying the control method could change the flow regime from skipping to nappe. Also, variations in the speed of falling water and energy loss were attributed to changes in the surface roughness and contact angle and implementation of the proposed control method.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"52 1\",\"pages\":\"332-349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCAMECH.2021.314069.573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2021.314069.573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在ansys-Fluent商业软件中,采用有限体积程序对三维阶梯式溢洪道的两相流进行了数值模拟。数值计算结果与实验数据相吻合。在此基础上,分析了各参数对溢洪道水流结构的影响。基于自然粗糙度,在溢洪道表面考虑了0.0001、0.0005和0.001 m的几个粗糙度高度来研究水流结构。在下一步中,使用了几个不同接触角的表面,包括80°、120°和160°。最后,对溢洪道台阶采用了不同构型的同时吹吸的被动控制方法。结果表明,表面粗糙度或接触角的改变以及控制方法的应用可以使流型从跳变到推覆。此外,下降速度和能量损失的变化归因于表面粗糙度和接触角的变化以及所提出的控制方法的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigations of Two-Phase Flow on a Stepped Spillway under Various Conditions
In this study, two-phase flow over a three-dimensional stepped spillway was numerically investigated using a finite volume code in ansys-Fluent commercial software. The numerical results were validated against experimental data. Then, the effects of several parameters were evaluated on the structure of the flow over the concerned spillway. Based on the natural roughness, several roughness heights of 0.0001, 0.0005, and 0.001 m were considered on the spillway surface to investigate the flow structure. In the next step, several surfaces with different contact angles, including 80, 120, and 160°, were used. Finally, a passive control method, including simultaneous blowing and suction with different configurations, was applied to the steps of the spillway. The results revealed that a change in the surface roughness or contact angle and applying the control method could change the flow regime from skipping to nappe. Also, variations in the speed of falling water and energy loss were attributed to changes in the surface roughness and contact angle and implementation of the proposed control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
期刊最新文献
Compressor cascade correlations modelling at design points using artificial neural networks Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation Higher order computational model considering the effects of transverse normal strain and 2-parameter elastic foundation for the bending of laminated panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1