Prajwal Keshavamurthy, E. Pateromichelakis, D. Dahlhaus, Chan Zhou
{"title":"支持边缘云的无线电资源管理,用于协作式自动驾驶","authors":"Prajwal Keshavamurthy, E. Pateromichelakis, D. Dahlhaus, Chan Zhou","doi":"10.1109/JSAC.2020.2986870","DOIUrl":null,"url":null,"abstract":"Co-operative automated driving (CAD) is a key fifth generation mobile networks (5G) use case in which autonomous vehicles communicate over vehicle-to-vehicle (V2V) links requiring a wide range of rate-reliability-delay performance. One key 5G enabler for CAD sidelink radio resource management (RRM) in a multi-operator environment is the virtualization of RRM at the cloud server. This, however, is challenging due to an increase in control plane delay, signaling overhead and complexity. This paper introduces an edge cloud-enabled end-to-end vehicle-to-everything (V2X) architecture to support sidelink RRM in CAD scenarios. Analyzing the problem of a cloud-based sidelink resource allocation for CAD, a utility-based multi-objective optimization problem is described and is translated to three tasks: 1) a vehicle cluster formation as a solution to the clique partitioning problem ensuring vehicle reachability on the control plane, 2) an inter-cluster resource block pool (RB-pool) allocation as a solution to a max-min fairness problem and 3) an intra-cluster resource allocation. The proposed solution framework aims to achieve high modularity, low complexity and decouples cluster formation and RB-pool assignment from the intra-cluster optimum resource allocation, which may be performed on different time scales at different edge cloud entities. Simulation results in a realistic vehicular deployment show significant gains in terms of sidelink throughput and delay while maintaining high link quality.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1515-1530"},"PeriodicalIF":13.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986870","citationCount":"4","resultStr":"{\"title\":\"Edge Cloud-Enabled Radio Resource Management for Co-Operative Automated Driving\",\"authors\":\"Prajwal Keshavamurthy, E. Pateromichelakis, D. Dahlhaus, Chan Zhou\",\"doi\":\"10.1109/JSAC.2020.2986870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-operative automated driving (CAD) is a key fifth generation mobile networks (5G) use case in which autonomous vehicles communicate over vehicle-to-vehicle (V2V) links requiring a wide range of rate-reliability-delay performance. One key 5G enabler for CAD sidelink radio resource management (RRM) in a multi-operator environment is the virtualization of RRM at the cloud server. This, however, is challenging due to an increase in control plane delay, signaling overhead and complexity. This paper introduces an edge cloud-enabled end-to-end vehicle-to-everything (V2X) architecture to support sidelink RRM in CAD scenarios. Analyzing the problem of a cloud-based sidelink resource allocation for CAD, a utility-based multi-objective optimization problem is described and is translated to three tasks: 1) a vehicle cluster formation as a solution to the clique partitioning problem ensuring vehicle reachability on the control plane, 2) an inter-cluster resource block pool (RB-pool) allocation as a solution to a max-min fairness problem and 3) an intra-cluster resource allocation. The proposed solution framework aims to achieve high modularity, low complexity and decouples cluster formation and RB-pool assignment from the intra-cluster optimum resource allocation, which may be performed on different time scales at different edge cloud entities. Simulation results in a realistic vehicular deployment show significant gains in terms of sidelink throughput and delay while maintaining high link quality.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1515-1530\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986870\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2986870\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986870","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Edge Cloud-Enabled Radio Resource Management for Co-Operative Automated Driving
Co-operative automated driving (CAD) is a key fifth generation mobile networks (5G) use case in which autonomous vehicles communicate over vehicle-to-vehicle (V2V) links requiring a wide range of rate-reliability-delay performance. One key 5G enabler for CAD sidelink radio resource management (RRM) in a multi-operator environment is the virtualization of RRM at the cloud server. This, however, is challenging due to an increase in control plane delay, signaling overhead and complexity. This paper introduces an edge cloud-enabled end-to-end vehicle-to-everything (V2X) architecture to support sidelink RRM in CAD scenarios. Analyzing the problem of a cloud-based sidelink resource allocation for CAD, a utility-based multi-objective optimization problem is described and is translated to three tasks: 1) a vehicle cluster formation as a solution to the clique partitioning problem ensuring vehicle reachability on the control plane, 2) an inter-cluster resource block pool (RB-pool) allocation as a solution to a max-min fairness problem and 3) an intra-cluster resource allocation. The proposed solution framework aims to achieve high modularity, low complexity and decouples cluster formation and RB-pool assignment from the intra-cluster optimum resource allocation, which may be performed on different time scales at different edge cloud entities. Simulation results in a realistic vehicular deployment show significant gains in terms of sidelink throughput and delay while maintaining high link quality.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.