{"title":"功能梯度铜复合材料的显微组织、力学和摩擦学分析","authors":"R. N, M. Sam","doi":"10.1080/13640461.2020.1769318","DOIUrl":null,"url":null,"abstract":"ABSTRACT Functionally graded Cu-10Sn-5Ni/10B4C composite was fabricated using horizontal centrifugal casting. Microstructural and mechanical properties were superior at reinforcement-rich inner zone where wear tests were conducted based on response surface methodology five-level run order, using pin on disc tribometer. Results showed that wear rate increases linearly with increase in load and sliding velocity whereas with increased sliding distance, it increases non-linearly with reduced slope. Minimum wear is observed at optimum combination of load (10 N), velocity (1 m/s) and sliding distance (500 m). Worn surfaces were analysed using scanning electron microscope to determine the wear mechanisms. Results concluded applied load as the major influential parameter over wear rate leading to occurrence of deep grooves along with delamination at higher loads and shallow grooves along the sliding direction at lower loads. Fabricated composite proves the ability to replace conventional materials for automotive sliding applications, providing improved wear characteristics at dry sliding conditions.","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":"33 1","pages":"123 - 133"},"PeriodicalIF":1.3000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13640461.2020.1769318","citationCount":"4","resultStr":"{\"title\":\"Microstructural, mechanical and tribological analysis of functionally graded copper composite\",\"authors\":\"R. N, M. Sam\",\"doi\":\"10.1080/13640461.2020.1769318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Functionally graded Cu-10Sn-5Ni/10B4C composite was fabricated using horizontal centrifugal casting. Microstructural and mechanical properties were superior at reinforcement-rich inner zone where wear tests were conducted based on response surface methodology five-level run order, using pin on disc tribometer. Results showed that wear rate increases linearly with increase in load and sliding velocity whereas with increased sliding distance, it increases non-linearly with reduced slope. Minimum wear is observed at optimum combination of load (10 N), velocity (1 m/s) and sliding distance (500 m). Worn surfaces were analysed using scanning electron microscope to determine the wear mechanisms. Results concluded applied load as the major influential parameter over wear rate leading to occurrence of deep grooves along with delamination at higher loads and shallow grooves along the sliding direction at lower loads. Fabricated composite proves the ability to replace conventional materials for automotive sliding applications, providing improved wear characteristics at dry sliding conditions.\",\"PeriodicalId\":13939,\"journal\":{\"name\":\"International Journal of Cast Metals Research\",\"volume\":\"33 1\",\"pages\":\"123 - 133\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13640461.2020.1769318\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cast Metals Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13640461.2020.1769318\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2020.1769318","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Microstructural, mechanical and tribological analysis of functionally graded copper composite
ABSTRACT Functionally graded Cu-10Sn-5Ni/10B4C composite was fabricated using horizontal centrifugal casting. Microstructural and mechanical properties were superior at reinforcement-rich inner zone where wear tests were conducted based on response surface methodology five-level run order, using pin on disc tribometer. Results showed that wear rate increases linearly with increase in load and sliding velocity whereas with increased sliding distance, it increases non-linearly with reduced slope. Minimum wear is observed at optimum combination of load (10 N), velocity (1 m/s) and sliding distance (500 m). Worn surfaces were analysed using scanning electron microscope to determine the wear mechanisms. Results concluded applied load as the major influential parameter over wear rate leading to occurrence of deep grooves along with delamination at higher loads and shallow grooves along the sliding direction at lower loads. Fabricated composite proves the ability to replace conventional materials for automotive sliding applications, providing improved wear characteristics at dry sliding conditions.
期刊介绍:
The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.