{"title":"具有规定时间收敛性的自主水面舰艇自适应编队控制","authors":"Ziyang Huang, Jun Li, Bing Huang","doi":"10.1177/17298806221105722","DOIUrl":null,"url":null,"abstract":"This article is dedicated to solving the problem of predefined-time cooperative control for autonomous surface vessels encountering model uncertainties and external perturbations. By virtue of the prescribed-time stable theory, a robust formation controller is constructed, with which the settling time of the cooperative system can be prescribed in advance. The controller is developed under the backstepping framework, where the dynamic surface control is applied to generate the real-time command. Considering the unmodeled autonomous surface vessel dynamics, the neural network-based nonlinear approximator is incorporated with minimum-learning-parameter technique. Under this scenario, the real-time control can be pursed with one parameter being estimated. Finally, comparative simulation examples are provided to exhibit the effectiveness and advantages of designed control strategies.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive formation control for autonomous surface vessels with prescribed-time convergence\",\"authors\":\"Ziyang Huang, Jun Li, Bing Huang\",\"doi\":\"10.1177/17298806221105722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is dedicated to solving the problem of predefined-time cooperative control for autonomous surface vessels encountering model uncertainties and external perturbations. By virtue of the prescribed-time stable theory, a robust formation controller is constructed, with which the settling time of the cooperative system can be prescribed in advance. The controller is developed under the backstepping framework, where the dynamic surface control is applied to generate the real-time command. Considering the unmodeled autonomous surface vessel dynamics, the neural network-based nonlinear approximator is incorporated with minimum-learning-parameter technique. Under this scenario, the real-time control can be pursed with one parameter being estimated. Finally, comparative simulation examples are provided to exhibit the effectiveness and advantages of designed control strategies.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221105722\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221105722","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Adaptive formation control for autonomous surface vessels with prescribed-time convergence
This article is dedicated to solving the problem of predefined-time cooperative control for autonomous surface vessels encountering model uncertainties and external perturbations. By virtue of the prescribed-time stable theory, a robust formation controller is constructed, with which the settling time of the cooperative system can be prescribed in advance. The controller is developed under the backstepping framework, where the dynamic surface control is applied to generate the real-time command. Considering the unmodeled autonomous surface vessel dynamics, the neural network-based nonlinear approximator is incorporated with minimum-learning-parameter technique. Under this scenario, the real-time control can be pursed with one parameter being estimated. Finally, comparative simulation examples are provided to exhibit the effectiveness and advantages of designed control strategies.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.