多域偏最小二乘回归

IF 2.3 4区 化学 Q1 SOCIAL WORK Journal of Chemometrics Pub Date : 2023-03-26 DOI:10.1002/cem.3477
Bianca Mikulasek, Valeria Fonseca Diaz, David Gabauer, Christoph Herwig, Ramin Nikzad-Langerodi
{"title":"多域偏最小二乘回归","authors":"Bianca Mikulasek,&nbsp;Valeria Fonseca Diaz,&nbsp;David Gabauer,&nbsp;Christoph Herwig,&nbsp;Ramin Nikzad-Langerodi","doi":"10.1002/cem.3477","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the multiple domain-invariant partial least squares (mdi-PLS) method, which generalizes the recently introduced domain-invariant partial least squares method (di-PLS). In contrast to di-PLS which solely allows transferring of knowledge from a single source to a single target domain, the proposed approach enables the incorporation of data from an arbitrary number of domains. Additionally, mdi-PLS offers a high level of flexibility by accepting labeled (supervised) and unlabeled (unsupervised) data to cope with dataset shifts. We demonstrate the application of the mdi-PLS method on a simulated and one real-world dataset. Our results show a clear outperformance of both PLS and di-PLS when data from multiple related domains are available for training multivariate calibration models underpinning the benefit of mdi-PLS.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial least squares regression with multiple domains\",\"authors\":\"Bianca Mikulasek,&nbsp;Valeria Fonseca Diaz,&nbsp;David Gabauer,&nbsp;Christoph Herwig,&nbsp;Ramin Nikzad-Langerodi\",\"doi\":\"10.1002/cem.3477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the multiple domain-invariant partial least squares (mdi-PLS) method, which generalizes the recently introduced domain-invariant partial least squares method (di-PLS). In contrast to di-PLS which solely allows transferring of knowledge from a single source to a single target domain, the proposed approach enables the incorporation of data from an arbitrary number of domains. Additionally, mdi-PLS offers a high level of flexibility by accepting labeled (supervised) and unlabeled (unsupervised) data to cope with dataset shifts. We demonstrate the application of the mdi-PLS method on a simulated and one real-world dataset. Our results show a clear outperformance of both PLS and di-PLS when data from multiple related domains are available for training multivariate calibration models underpinning the benefit of mdi-PLS.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3477\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3477","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了多域不变偏最小二乘法(mdi‐PLS),它推广了最近引入的域不变偏最小平方法(di‐PLS)。与仅允许将知识从单个源转移到单个目标域的di-PLS相比,所提出的方法能够合并任意数量域的数据。此外,mdi-PLS通过接受标记(监督)和未标记(无监督)数据来应对数据集的变化,提供了高度的灵活性。我们在模拟和一个真实世界的数据集上演示了mdi-PLS方法的应用。我们的结果表明,当来自多个相关领域的数据可用于训练支持mdi-PLS益处的多变量校准模型时,PLS和di-PLS的性能都明显优于PLS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partial least squares regression with multiple domains

This paper introduces the multiple domain-invariant partial least squares (mdi-PLS) method, which generalizes the recently introduced domain-invariant partial least squares method (di-PLS). In contrast to di-PLS which solely allows transferring of knowledge from a single source to a single target domain, the proposed approach enables the incorporation of data from an arbitrary number of domains. Additionally, mdi-PLS offers a high level of flexibility by accepting labeled (supervised) and unlabeled (unsupervised) data to cope with dataset shifts. We demonstrate the application of the mdi-PLS method on a simulated and one real-world dataset. Our results show a clear outperformance of both PLS and di-PLS when data from multiple related domains are available for training multivariate calibration models underpinning the benefit of mdi-PLS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
期刊最新文献
Issue Information Issue Information Resampling as a Robust Measure of Model Complexity in PARAFAC Models Population Power Curves in ASCA With Permutation Testing A Non‐Linear Model for Multiple Alcohol Intakes and Optimal Designs Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1