Yoshiaki Ito, O. Ikeda, T. Sakamaki, T. Kuribayashi, A. Suzuki
{"title":"α-ScOOH的P-V-T状态方程。","authors":"Yoshiaki Ito, O. Ikeda, T. Sakamaki, T. Kuribayashi, A. Suzuki","doi":"10.1080/08957959.2022.2089568","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n In this study, an in situ X-ray diffraction study of α-ScOOH, scandium oxyhydroxide with a diaspore-type structure, was conducted at a pressure and temperature of up to 4.12 GPa and 700 K, respectively, to determine the pressure-volume-temperature (P-V-T) equation of state (EoS). Using a least-squares fit of the second-order Birch–Murnaghan EoS to the P-V-T data, the EoS parameters of α-ScOOH were determined as bulk modulus KT 0 = 101(1) GPa, (∂KT /∂T) P = −0.009(5) GPa K−1, and thermal expansion coefficient at zero pressure α = 3.12(6) 10−5 K−1. α-ScOOH exhibits anisotropic compression and thermal expansion behaviors, which are consistent with those of previous studies on diaspore-type oxyhydroxides. α-ScOOH is more compressible than other diaspore-type oxyhydroxides, and the product of the bulk modulus and volume is approximately constant among diaspore-type M3 + OOH (M = Al, Sc, and Fe).","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"200 - 212"},"PeriodicalIF":1.2000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P-V-T equation of state of α-ScOOH.\",\"authors\":\"Yoshiaki Ito, O. Ikeda, T. Sakamaki, T. Kuribayashi, A. Suzuki\",\"doi\":\"10.1080/08957959.2022.2089568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n In this study, an in situ X-ray diffraction study of α-ScOOH, scandium oxyhydroxide with a diaspore-type structure, was conducted at a pressure and temperature of up to 4.12 GPa and 700 K, respectively, to determine the pressure-volume-temperature (P-V-T) equation of state (EoS). Using a least-squares fit of the second-order Birch–Murnaghan EoS to the P-V-T data, the EoS parameters of α-ScOOH were determined as bulk modulus KT 0 = 101(1) GPa, (∂KT /∂T) P = −0.009(5) GPa K−1, and thermal expansion coefficient at zero pressure α = 3.12(6) 10−5 K−1. α-ScOOH exhibits anisotropic compression and thermal expansion behaviors, which are consistent with those of previous studies on diaspore-type oxyhydroxides. α-ScOOH is more compressible than other diaspore-type oxyhydroxides, and the product of the bulk modulus and volume is approximately constant among diaspore-type M3 + OOH (M = Al, Sc, and Fe).\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"42 1\",\"pages\":\"200 - 212\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2022.2089568\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2022.2089568","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
ABSTRACT
In this study, an in situ X-ray diffraction study of α-ScOOH, scandium oxyhydroxide with a diaspore-type structure, was conducted at a pressure and temperature of up to 4.12 GPa and 700 K, respectively, to determine the pressure-volume-temperature (P-V-T) equation of state (EoS). Using a least-squares fit of the second-order Birch–Murnaghan EoS to the P-V-T data, the EoS parameters of α-ScOOH were determined as bulk modulus KT 0 = 101(1) GPa, (∂KT /∂T) P = −0.009(5) GPa K−1, and thermal expansion coefficient at zero pressure α = 3.12(6) 10−5 K−1. α-ScOOH exhibits anisotropic compression and thermal expansion behaviors, which are consistent with those of previous studies on diaspore-type oxyhydroxides. α-ScOOH is more compressible than other diaspore-type oxyhydroxides, and the product of the bulk modulus and volume is approximately constant among diaspore-type M3 + OOH (M = Al, Sc, and Fe).
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.